Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 47 |
Descriptor
Source
Journal of Chemical Education | 84 |
Author
Birk, James P., Ed. | 5 |
Batt, Russell H., Ed. | 4 |
Moore, John W., Ed. | 3 |
Chau, F. T. | 2 |
Cole, Renee S. | 2 |
Evans, Michael J. | 2 |
Aksela, Maija | 1 |
Albee, David | 1 |
Algar, W. Russ | 1 |
Aliaksei Boika | 1 |
Amend, John R. | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 42 |
Postsecondary Education | 23 |
High Schools | 7 |
Secondary Education | 4 |
Two Year Colleges | 1 |
Audience
Teachers | 26 |
Practitioners | 22 |
Researchers | 11 |
Students | 2 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Paige M. Russell; Jeffrey P. Potratz – Journal of Chemical Education, 2023
Three computer-based activities focusing on fundamentals of binding interactions are described that are powered by Desmos, freely available web-based software. The software allows the instructor to monitor the progress of each student completing the activity by privately viewing their answers in real time, to enforce class pacing by modulating…
Descriptors: Computer Software, Science Activities, Science Instruction, Computer Uses in Education
Baosen Zhang; Ariana Frkonja-Kuczin; Zhong-Hui Duan; Aliaksei Boika – Journal of Chemical Education, 2023
Computer vision (CV) is a subfield of artificial intelligence (AI) that trains computers to understand our visual world based on digital images. There are many successful applications of CV including face and hand gesture detection, weather recording, smart farming, and self-driving cars. Recent advances in computer vision with machine learning…
Descriptors: Classification, Laboratory Equipment, Visual Aids, Optics
Winter, Julia E.; Engalan, Joseph; Wegwerth, Sarah E.; Manchester, Gianna J.; Wentzel, Michael T.; Evans, Michael J.; Kabrhel, James E.; Yee, Lawrence J. – Journal of Chemical Education, 2020
The mechanism maps that guide student instruction in organic chemistry curricula are structural representations of bond-breaking and bond-making events that transform a reactant into a product. For students, these pathways represented by electron pushing formalism (EPF) can be challenging to navigate. For instructors, providing formative feedback…
Descriptors: Organic Chemistry, Science Instruction, Computer Uses in Education, Educational Technology
Navarre, Edward C. – Journal of Chemical Education, 2020
A simple computer interface for controlling a compact spectrograph for use as a spectrophotometer in an undergraduate teaching laboratory was developed. The project was implemented on a Raspberry Pi computer which permits the integration of a light source into the software. The interface was written in Python to facilitate modification by the user…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Students
Vargas, Santiago; Zamirpour, Siavash; Menon, Shreya; Rothman, Arielle; Häse, Florian; Tamayo-Mendoza, Teresa; Romero, Jonathan; Sim, Sukin; Menke, Tim; Aspuru-Guzik, Alán – Journal of Chemical Education, 2020
The increasing integration of software and automation in modern chemical laboratories prompts special emphasis on two important skills in the chemistry classroom. First, students need to learn the technical skills involved in modern scientific computing and automation. Second, applying these techniques in practice requires effective collaboration…
Descriptors: Teamwork, Computer Uses in Education, Cooperative Learning, Automation
Hofmann, Andreas; Coster, Mark J.; Taylor, Paul – Journal of Chemical Education, 2019
The interactive generation of chemical-structure diagrams is an integral activity in the study of chemistry as well as in professional chemistry environments. For educational purposes in particular, the existence of suitable software tools free of charge is of great importance. Although a number of free chemical-drawing applications are currently…
Descriptors: Science Instruction, Secondary School Science, High Schools, College Science
Kosenkov, Yana; Kosenkov, Dmitri – Journal of Chemical Education, 2021
A novel technology that employs computer vision (CV) to carry out an automatic titration experiment is presented. The experiment is designed to facilitate understanding of the basics of the CV technology and its application in chemistry among undergraduate students. The standard chemical procedure of titration has been chosen, since it is…
Descriptors: Undergraduate Students, Chemistry, Computer Uses in Education, Science Experiments
Beussman, Douglas J.; Walters, John P. – Journal of Chemical Education, 2017
Virtually all modern chemical instrumentation is controlled by computers. While software packages are continually becoming easier to use, allowing for more researchers to utilize more complex instruments, conveying some level of understanding as to how computers and instruments communicate is still an important part of the undergraduate…
Descriptors: Undergraduate Students, Science Education, Chemistry, Computer Uses in Education
Smith, Garon C.; Hossain, Md Mainul – Journal of Chemical Education, 2016
BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…
Descriptors: Chemistry, Science Instruction, Computer Software, Computer Uses in Education
Buckley, Paul; Fahrenkrug, Eli – Journal of Chemical Education, 2020
This work developed the Flint, Michigan water crisis as a modular case study for teaching traditional analytical chemistry concepts through the medium of environmental justice, power, and equity. An interdisciplinary framework was used to design, implement, and assess the case study in an effort to understand how the deliberate presence of…
Descriptors: Urban Areas, Water Pollution, Chemistry, Case Studies
Álvarez-Rúa, Carmen; Borge, Javier – Journal of Chemical Education, 2016
Thermodynamic processes are complex phenomena that can be understood as a set of successive stages. When treating processes, classical thermodynamics (and most particularly, the Gibbsian formulation, predominantly used in chemistry) only pays attention to initial and final states. However, reintroducing the notion of process is absolutely…
Descriptors: Undergraduate Study, Science Education, Chemistry, Thermodynamics
Weiss, Charles J. – Journal of Chemical Education, 2017
The Scientific Computing for Chemists course taught at Wabash College teaches chemistry students to use the Python programming language, Jupyter notebooks, and a number of common Python scientific libraries to process, analyze, and visualize data. Assuming no prior programming experience, the course introduces students to basic programming and…
Descriptors: Science Instruction, College Science, Chemistry, Computer Uses in Education
Robertson, Michael J.; Jorgensen, William L. – Journal of Chemical Education, 2015
Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…
Descriptors: Organic Chemistry, Visual Aids, Theories, Molecular Structure
Litofsky, Joshua; Viswanathan, Rama – Journal of Chemical Education, 2015
Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…
Descriptors: Science Instruction, Chemistry, Equations (Mathematics), Teaching Methods
Hansen, Sarah J. R.; Zhu, Jieling; Karch, Jessica M.; Sorrento, Cristina M.; Ulichny, Joseph C.; Kaufman, Laura J. – Journal of Chemical Education, 2016
The gap between graduate research and introductory undergraduate teaching laboratories is often wide, but the development of teaching activities rooted within the research environment offers an opportunity for undergraduate students to have first-hand experience with research currently being conducted and for graduate students to develop…
Descriptors: Science Instruction, Science Laboratories, Scientific Research, Data Analysis