Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 6 |
Descriptor
Source
| Grantee Submission | 6 |
Author
| Conrad Borchers | 2 |
| Danielle S. McNamara | 2 |
| Mihai Dascalu | 2 |
| Bogdan Nicula | 1 |
| Cioaca, Valentin Sergiu | 1 |
| Dascalu, Mihai | 1 |
| Devika Venugopalan | 1 |
| Dragos-Georgian Corlatescu | 1 |
| Jionghao Lin | 1 |
| Lam, Eva | 1 |
| Martin, Kit | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 6 |
| Speeches/Meeting Papers | 4 |
| Journal Articles | 1 |
Education Level
| Higher Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Conrad Borchers; Tianze Shou – Grantee Submission, 2025
Large Language Models (LLMs) hold promise as dynamic instructional aids. Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)--where student knowledge and pedagogical strategies are explicitly modeled. We propose a prompt variation framework to assess LLM-generated instructional moves' adaptivity…
Descriptors: Benchmarking, Computational Linguistics, Artificial Intelligence, Computer Software
Peer reviewedDevika Venugopalan; Ziwen Yan; Conrad Borchers; Jionghao Lin; Vincent Aleven – Grantee Submission, 2025
Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning…
Descriptors: Homework, Computational Linguistics, Teaching Methods, Learning Analytics
Bogdan Nicula; Mihai Dascalu; Tracy Arner; Renu Balyan; Danielle S. McNamara – Grantee Submission, 2023
Text comprehension is an essential skill in today's information-rich world, and self-explanation practice helps students improve their understanding of complex texts. This study was centered on leveraging open-source Large Language Models (LLMs), specifically FLAN-T5, to automatically assess the comprehension strategies employed by readers while…
Descriptors: Reading Comprehension, Language Processing, Models, STEM Education
Cioaca, Valentin Sergiu; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Numerous approaches have been introduced to automate the process of text summarization, but only few can be easily adapted to multiple languages. This paper introduces a multilingual text processing pipeline integrated in the open-source "ReaderBench" framework, which can be retrofit to cover more than 50 languages. While considering the…
Descriptors: Documentation, Computer Software, Open Source Technology, Algorithms
Martin, Kit; Lam, Eva – Grantee Submission, 2020
Transnational youth use digital media to affiliate with diverse cultural and linguistic practices, as demonstrated through the use of multiple languages and hybrid linguistic codes, media genres and multimodal expressions in the youths' online communication and writing (Black, 2009; Domingo, 2014; Kim, 2016). This study introduces a learning…
Descriptors: Multilingualism, Information Technology, Language Usage, Code Switching (Language)

Direct link
