Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 26 |
Since 2016 (last 10 years) | 31 |
Since 2006 (last 20 years) | 31 |
Descriptor
Source
International Educational… | 15 |
Grantee Submission | 10 |
International Association for… | 5 |
OTESSA Conference Proceedings | 1 |
Author
Vincent Aleven | 4 |
Adam Sales | 2 |
Bruce M. McLaren | 2 |
Kenneth Holstein | 2 |
PaaBen, Benjamin | 2 |
Adjei, Seth A. | 1 |
Akihito Kamata | 1 |
Aleven, Vincent | 1 |
Balaban, Igor | 1 |
Barnes, Tiffany | 1 |
Barollet, Théo | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 31 |
Reports - Research | 23 |
Reports - Evaluative | 5 |
Reports - Descriptive | 3 |
Information Analyses | 1 |
Education Level
Audience
Location
Australia | 1 |
California (Berkeley) | 1 |
California (Stanford) | 1 |
Europe | 1 |
Florida | 1 |
France | 1 |
Pennsylvania (Pittsburgh) | 1 |
South Korea | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Test of English for… | 1 |
What Works Clearinghouse Rating
Mia Carapina; Klaudio Pap – International Association for Development of the Information Society, 2024
This paper introduces CoCo, a system designed to support and encourage collaborative learning among colocated students sharing a single mobile device. It provides teachers with the possibility to create digital lessons, configure parameters for collaborative activities such as the number of students and tablets, and monitor students' progress. On…
Descriptors: Cooperative Learning, Handheld Devices, Teaching Methods, Learning Management Systems
Ethan Prihar; Adam Sales; Neil Heffernan – Grantee Submission, 2023
This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our…
Descriptors: Trust (Psychology), Learning Management Systems, Learning Processes, Algorithms

Devika Venugopalan; Ziwen Yan; Conrad Borchers; Jionghao Lin; Vincent Aleven – Grantee Submission, 2025
Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning…
Descriptors: Homework, Computational Linguistics, Teaching Methods, Learning Analytics
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Vincent Aleven; Jori Blankestijn; LuEttaMae Lawrence; Tomohiro Nagashima; Niels Taatgen – Grantee Submission, 2022
Past research has yielded ample knowledge regarding the design of analytics-based tools for teachers and has found beneficial effects of several tools on teaching and learning. Yet there is relatively little knowledge regarding the design of tools that support teachers when a class of students uses AI-based tutoring software for self-paced…
Descriptors: Educational Technology, Artificial Intelligence, Problem Solving, Intelligent Tutoring Systems
Shou, Tianze; Borchers, Conrad; Karumbaiah, Shamya; Aleven, Vincent – International Educational Data Mining Society, 2023
Spatial analytics receive increased attention in educational data mining. A critical issue in stop detection (i.e., the automatic extraction of timestamped and located stops in the movement of individuals) is a lack of validation of stop accuracy to represent phenomena of interest. Next to a radius that an actor does not exceed for a certain…
Descriptors: Classroom Design, Accuracy, Validity, Space Utilization
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Fancsali, Stephen E.; Murphy, April; Ritter, Steve – International Educational Data Mining Society, 2022
Ten years after the announcement of the "rise of the super experiment" at Educational Data Mining 2012, challenges to implementing "internet scale" educational experiments often persist for educational technology providers, especially when they seek to test substantive instructional interventions. Studies that deploy and test…
Descriptors: Learning Analytics, Educational Technology, Barriers, Data Analysis
Williamson, Kimberly; Kizilcec, René F. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms such as Bayesian Knowledge Tracing (BKT) can provide students and teachers with helpful information about their progress towards learning objectives. Despite the popularity of BKT in the research community, the algorithm is not widely adopted in educational practice. This may be due to skepticism from users and…
Descriptors: Bayesian Statistics, Learning Processes, Computer Software, Learning Analytics
Jia, Qinjin; Young, Mitchell; Xiao, Yunkai; Cui, Jialin; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – International Educational Data Mining Society, 2022
Providing timely feedback is crucial in promoting academic achievement and student success. However, for multifarious reasons (e.g., limited teaching resources), feedback often arrives too late for learners to act on the feedback and improve learning. Thus, automated feedback systems have emerged to tackle educational tasks in various domains,…
Descriptors: Student Projects, Feedback (Response), Natural Language Processing, Guidelines
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Silvia García-Méndez; Francisco de Arriba-Pérez; Francisco J. González-Castaño – International Association for Development of the Information Society, 2023
Mobile learning or mLearning has become an essential tool in many fields in this digital era, among the ones educational training deserves special attention, that is, applied to both basic and higher education towards active, flexible, effective high-quality and continuous learning. However, despite the advances in Natural Language Processing…
Descriptors: Higher Education, Artificial Intelligence, Computer Software, Usability
Khan, Md Akib Zabed; Polyzou, Agoritsa – International Educational Data Mining Society, 2023
Academic advising plays an important role in students' decision-making in higher education. Data-driven methods provide useful recommendations to students to help them with degree completion. Several course recommendation models have been proposed in the literature to recommend courses for the next semester. One aspect of the data that has yet to…
Descriptors: Course Selection (Students), Learning Analytics, Academic Advising, Decision Making
Natalie Brezack; Wynnie Chan; Mingyu Feng – Grantee Submission, 2024
This paper explores how learning analytics data provided by a math problem-solving educational technology platform informed 5th and 6th grade teachers' instructional decisions around socioemotional learning (SEL). MathSpring is an educational technology tool that provides teachers with data on students' effort, progress, and emotions while…
Descriptors: Social Emotional Learning, Mathematics Instruction, Teacher Attitudes, Comparative Analysis
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts