Publication Date
| In 2026 | 0 |
| Since 2025 | 6 |
| Since 2022 (last 5 years) | 32 |
| Since 2017 (last 10 years) | 59 |
| Since 2007 (last 20 years) | 66 |
Descriptor
| Computer Science Education | 66 |
| Programming | 37 |
| College Students | 22 |
| Intelligent Tutoring Systems | 20 |
| Prediction | 20 |
| Artificial Intelligence | 18 |
| Models | 17 |
| Feedback (Response) | 15 |
| Undergraduate Students | 15 |
| Data Analysis | 14 |
| Student Behavior | 14 |
| More ▼ | |
Source
| International Educational… | 66 |
Author
| Barnes, Tiffany | 14 |
| Chi, Min | 7 |
| Price, Thomas W. | 7 |
| Heckman, Sarah | 4 |
| Mao, Ye | 4 |
| Shi, Yang | 4 |
| Singla, Adish | 4 |
| Boyer, Kristy Elizabeth | 3 |
| Lynch, Collin | 3 |
| Marwan, Samiha | 3 |
| Zhi, Rui | 3 |
| More ▼ | |
Publication Type
| Speeches/Meeting Papers | 62 |
| Reports - Research | 57 |
| Collected Works - Proceedings | 3 |
| Reports - Descriptive | 3 |
| Reports - Evaluative | 3 |
| Books | 1 |
Education Level
Audience
Location
| Germany | 3 |
| Brazil | 2 |
| Uruguay | 2 |
| Virginia | 2 |
| Arizona | 1 |
| China | 1 |
| Europe | 1 |
| France | 1 |
| Iceland | 1 |
| Japan | 1 |
| Massachusetts | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Haoze Du; Richard Li; Edward Gehringer – International Educational Data Mining Society, 2025
Evaluating the performance of Large Language Models (LLMs) is a critical yet challenging task, particularly when aiming to avoid subjective assessments. This paper proposes a framework for leveraging subjective metrics derived from the class textual materials across different semesters to assess LLM outputs across various tasks. By utilizing…
Descriptors: Artificial Intelligence, Performance, Evaluation, Automation
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Muhammad Fawad Akbar Khan; Max Ramsdell; Erik Falor; Hamid Karimi – International Educational Data Mining Society, 2024
This paper undertakes a thorough evaluation of ChatGPT's code generation capabilities, contrasting them with those of human programmers from both educational and software engineering standpoints. The emphasis is placed on elucidating its importance in these intertwined domains. To facilitate a robust analysis, we curated a novel dataset comprising…
Descriptors: Artificial Intelligence, Automation, Computer Science Education, Programming
Yunsung Kim; Jadon Geathers; Chris Piech – International Educational Data Mining Society, 2024
"Stochastic programs," which are programs that produce probabilistic output, are a pivotal paradigm in various areas of CS education from introductory programming to machine learning and data science. Despite their importance, the problem of automatically grading such programs remains surprisingly unexplored. In this paper, we formalize…
Descriptors: Grading, Automation, Accuracy, Programming
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Mehmet Arif Demirta¸; Max Fowler; Kathryn Cunningham – International Educational Data Mining Society, 2024
Analyzing which skills students develop in introductory programming education is an important question for the computer science education community. These key skills and concepts have been formalized as knowledge components, which are units of knowledge that can be measured by performance on a set of tasks. While knowledge components in other…
Descriptors: Programming, Computer Science Education, Skill Development, Knowledge Level
Gyuhun Jung; Markel Sanz Ausin; Tiffany Barnes; Min Chi – International Educational Data Mining Society, 2024
We presented two empirical studies to assess the efficacy of two Deep Reinforcement Learning (DRL) frameworks on two distinct Intelligent Tutoring Systems (ITSs) to exploring the impact of Worked Example (WE) and Problem Solving (PS) on student learning. The first study was conducted on a probability tutor where we applied a classic DRL to induce…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Artificial Intelligence, Teaching Methods
David A. Joyner; Zoey Anne Beda; Michael Cohen; Melanie Duffin; Amy Garcia Fernandez; Liz Hayes-Golding; Jonathan Hildreth; Alex Houk; Rebecca Johnson; Kayla Matcheck; Ana Santos – International Educational Data Mining Society, 2024
This study examines log data from proctored examinations from two classes offered as part of a large online graduate program in computer science. In these two classes, students are permitted to access any internet content during their exams, which themselves have remained largely unchanged over the last several semesters. As a result, when ChatGPT…
Descriptors: Computer Assisted Testing, Tests, Internet, Graduate Students
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Cleuziou, Guillaume; Flouvat, Frédéric – International Educational Data Mining Society, 2021
Improving the pedagogical effectiveness of programming training platforms is a hot topic that requires the construction of fine and exploitable representations of learners' programs. This article presents a new approach for learning program embeddings. Starting from the hypothesis that the function of a program, but also its "style", can…
Descriptors: Programming, Computer Science Education, Electronic Learning, Data Analysis
Victor-Alexandru Padurean; Tung Phung; Nachiket Kotalwar; Michael Liut; Juho Leinonen; Paul Denny; Adish Singla – International Educational Data Mining Society, 2025
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses…
Descriptors: Automation, Student Writing Models, Feedback (Response), Programming
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Shi, Yang; Mao, Ye; Barnes, Tiffany; Chi, Min; Price, Thomas W. – International Educational Data Mining Society, 2021
Automatically detecting bugs in student program code is critical to enable formative feedback to help students pinpoint errors and resolve them. Deep learning models especially code2vec and ASTNN have shown great success for "large-scale" code classification. It is not clear, however, whether they can be effectively used for bug…
Descriptors: Artificial Intelligence, Program Effectiveness, Coding, Computer Science Education

Peer reviewed
