NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Videep Venkatesha; Abhijnan Nath; Ibrahim Khebour; Avyakta Chelle; Mariah Bradford; Jingxuan Tu; James Pustejovsky; Nathaniel Blanchard; Nikhil Krishnaswamy – International Educational Data Mining Society, 2024
In the realm of collaborative learning, extracting the beliefs shared within a group is paramount, especially when navigating complex tasks. Inherent in this problem is the fact that in naturalistic collaborative discourse, the same propositions may be expressed in radically different ways. This difficulty is exacerbated when speech overlaps and…
Descriptors: Cooperative Learning, Dialogs (Language), Language Usage, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Gloria Ashiya Katuka – ProQuest LLC, 2024
Dialogue act (DA) classification plays an important role in understanding, interpreting and modeling dialogue. Dialogue acts (DAs) represent the intended meaning of an utterance, which is associated with the illocutionary force (or the speaker's intention), such as greetings, questions, requests, statements, and agreements. In natural language…
Descriptors: Dialogs (Language), Classification, Intention, Natural Language Processing
Mazumder, Sahisnu – ProQuest LLC, 2021
Dialogue systems, commonly called as Chatbots, have gained escalating popularity in recent times due to their wide-spread applications in carrying out chit-chat conversations with users and accomplishing tasks as personal assistants. These systems are typically trained from manually-labeled data and/or written with handcrafted rules and often, use…
Descriptors: Computer Mediated Communication, Computer Software, Dialogs (Language), Information Seeking
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – Journal of Educational Data Mining, 2015
Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…
Descriptors: Classification, Dialogs (Language), Computational Linguistics, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Forbes-Riley, Kate; Litman, Diane – International Journal of Artificial Intelligence in Education, 2013
In this paper we investigate how student disengagement relates to two performance metrics in a spoken dialog computer tutoring corpus, both when disengagement is measured through manual annotation by a trained human judge, and also when disengagement is measured through automatic annotation by the system based on a machine learning model. First,…
Descriptors: Correlation, Learner Engagement, Oral Language, Computer Assisted Instruction