Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 37 |
| Since 2017 (last 10 years) | 106 |
| Since 2007 (last 20 years) | 282 |
Descriptor
Source
Author
| Gelman, Andrew | 7 |
| Zhang, Zhiyong | 7 |
| Lee, Sik-Yum | 5 |
| Wang, Wen-Chung | 5 |
| Huang, Hung-Yu | 4 |
| Kim, Sooyeon | 4 |
| Lockwood, J. R. | 4 |
| McCaffrey, Daniel F. | 4 |
| Moses, Tim | 4 |
| Sinharay, Sandip | 4 |
| Song, Xin-Yuan | 4 |
| More ▼ | |
Publication Type
Education Level
Audience
| Practitioners | 3 |
| Teachers | 3 |
| Researchers | 2 |
Location
| Florida | 5 |
| Taiwan | 4 |
| Germany | 3 |
| Pennsylvania | 3 |
| Netherlands | 2 |
| New York | 2 |
| North Carolina | 2 |
| Spain | 2 |
| Armenia | 1 |
| Australia | 1 |
| Austria | 1 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Huang, Hung-Yu – Educational and Psychological Measurement, 2017
Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Computation
Yildiz, Mustafa – ProQuest LLC, 2017
Student misconceptions have been studied for decades from a curricular/instructional perspective and from the assessment/test level perspective. Numerous misconception assessment tools have been developed in order to measure students' misconceptions relative to the correct content. Often, these tools are used to make a variety of educational…
Descriptors: Misconceptions, Students, Item Response Theory, Models
Satake, Eiki; Vashlishan Murray, Amy – Teaching Statistics: An International Journal for Teachers, 2015
This paper presents a comparison of three approaches to the teaching of probability to demonstrate how the truth table of elementary mathematical logic can be used to teach the calculations of conditional probabilities. Students are typically introduced to the topic of conditional probabilities--especially the ones that involve Bayes' rule--with…
Descriptors: Teaching Methods, Probability, Bayesian Statistics, Mathematical Logic
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Hardman, Kyle O.; Cowan, Nelson – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Working memory (WM) is used for storing information in a highly accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information to perform optimally on the task. In this study, we used visual WM tasks that had…
Descriptors: Logical Thinking, Short Term Memory, Models, Individual Differences
Back to the Basics: Bayesian Extensions of IRT Outperform Neural Networks for Proficiency Estimation
Wilson, Kevin H.; Karklin, Yan; Han, Bojian; Ekanadham, Chaitanya – International Educational Data Mining Society, 2016
Estimating student proficiency is an important task for computer based learning systems. We compare a family of IRT-based proficiency estimation methods to Deep Knowledge Tracing (DKT), a recently proposed recurrent neural network model with promising initial results. We evaluate how well each model predicts a student's future response given…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Artificial Intelligence
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Rahimian, M. Amin – ProQuest LLC, 2017
Many important real-world decision-making problems involve group interactions among individuals with purely informational interactions. Such situations arise for example in jury deliberations, expert committees, medical diagnoses, etc. We model the purely informational interactions of group members, where they receive private information and act…
Descriptors: Learning Processes, Group Dynamics, Cooperative Learning, Bayesian Statistics
Ames, Allison J.; Samonte, Kelli – Educational and Psychological Measurement, 2015
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Computer Software
Mandel, Travis Scott – ProQuest LLC, 2017
When a new student comes to play an educational game, how can we determine what content to give them such that they learn as much as possible? When a frustrated customer calls in to a helpline, how can we determine what to say to best assist them? When an ill patient comes in to the clinic, how do we determine what tests to run and treatments to…
Descriptors: Reinforcement, Learning Processes, Student Evaluation, Data Collection
Nižnan, Juraj; Pelánek, Radek; Rihák, Jirí – International Educational Data Mining Society, 2015
Intelligent behavior of adaptive educational systems is based on student models. Most research in student modeling focuses on student learning (acquisition of skills). We focus on prior knowledge, which gets much less attention in modeling and yet can be highly varied and have important consequences for the use of educational systems. We describe…
Descriptors: Prior Learning, Models, Intelligent Tutoring Systems, Bayesian Statistics
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Kim, Dan; Opfer, John E. – Developmental Psychology, 2017
Representations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.g., 0-?) number-line tasks, with considerable debate regarding whether 1 or both tasks elicit unique cognitive strategies (e.g., addition or subtraction) and require unique cognitive models. To test this, we examined how well a mixed log-linear…
Descriptors: Computation, Numbers, Children, Cognitive Development

Peer reviewed
Direct link
