NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 76 to 90 of 265 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Adachi, Kohei – Psychometrika, 2013
Rubin and Thayer ("Psychometrika," 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one,…
Descriptors: Factor Analysis, Mathematics, Correlation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rijmen, Frank; Jeon, Minjeong; von Davier, Matthias; Rabe-Hesketh, Sophia – Journal of Educational and Behavioral Statistics, 2014
Second-order item response theory models have been used for assessments consisting of several domains, such as content areas. We extend the second-order model to a third-order model for assessments that include subdomains nested in domains. Using a graphical model framework, it is shown how the model does not suffer from the curse of…
Descriptors: Item Response Theory, Models, Educational Assessment, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Educational and Psychological Measurement, 2014
This research note contributes to the discussion of methods that can be used to identify useful auxiliary variables for analyses of incomplete data sets. A latent variable approach is discussed, which is helpful in finding auxiliary variables with the property that if included in subsequent maximum likelihood analyses they may enhance considerably…
Descriptors: Data Analysis, Identification, Maximum Likelihood Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sahin, Alper; Weiss, David J. – Educational Sciences: Theory and Practice, 2015
This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…
Descriptors: Adaptive Testing, Computer Assisted Testing, Sample Size, Item Banks
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Falk, Carl F.; Cai, Li – Grantee Submission, 2014
We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest…
Descriptors: Maximum Likelihood Statistics, Item Response Theory, Computation, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott; Cai, Li – Educational and Psychological Measurement, 2014
In Ramsay curve item response theory (RC-IRT) modeling, the shape of the latent trait distribution is estimated simultaneously with the item parameters. In its original implementation, RC-IRT is estimated via Bock and Aitkin's EM algorithm, which yields maximum marginal likelihood estimates. This method, however, does not produce the…
Descriptors: Item Response Theory, Models, Computation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi – Educational and Psychological Measurement, 2014
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
Descriptors: Sampling, Statistical Inference, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S. – Educational Research and Reviews, 2016
The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…
Descriptors: Maximum Likelihood Statistics, Computation, Item Response Theory, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  18