NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Pell Grant Program1
What Works Clearinghouse Rating
Showing 61 to 75 of 307 results Save | Export
Bulus, Metin – ProQuest LLC, 2017
In education, sample characteristics can be complex due to the nested structure of students, teachers, classrooms, schools, and districts. In the past, not many considerations were given to such complex sampling schemes in statistical power analysis. More recently in the past two decades, however, education scholars have developed tools to conduct…
Descriptors: Educational Research, Regression (Statistics), Research Design, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2016
Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…
Descriptors: Reliability, Computation, Statistical Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Dimitrov, Dimiter M. – Measurement and Evaluation in Counseling and Development, 2017
This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.
Descriptors: Test Bias, Item Response Theory, Factor Analysis, Evaluation Methods
Yildiz, Mustafa – ProQuest LLC, 2017
Student misconceptions have been studied for decades from a curricular/instructional perspective and from the assessment/test level perspective. Numerous misconception assessment tools have been developed in order to measure students' misconceptions relative to the correct content. Often, these tools are used to make a variety of educational…
Descriptors: Misconceptions, Students, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-hwane; Wang, Yan; Ferron, John M. – AERA Online Paper Repository, 2017
Multiple-baseline studies provide meta-analysts the opportunity to compute effect sizes based on either within-series comparisons of treatment phase to baseline phase observations, or time specific between-series comparisons of observations from those that have started treatment to observations of those that are still in baseline. The advantage of…
Descriptors: Meta Analysis, Effect Size, Hierarchical Linear Modeling, Computation
Potgieter, Cornelis; Kamata, Akihito; Kara, Yusuf – Grantee Submission, 2017
This study proposes a two-part model that includes components for reading accuracy and reading speed. The speed component is a log-normal factor model, for which speed data are measured by reading time for each sentence being assessed. The accuracy component is a binomial-count factor model, where the accuracy data are measured by the number of…
Descriptors: Reading Rate, Oral Reading, Accuracy, Models
Peer reviewed Peer reviewed
Direct linkDirect link
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Herron, Michael C.; Quinn, Kevin M. – Sociological Methods & Research, 2016
Case studies appear prominently in political science, sociology, and other social science fields. A scholar employing a case study research design in an effort to estimate causal effects must confront the question, how should cases be selected for analysis? This question is important because the results derived from a case study research program…
Descriptors: Case Studies, Selection, Sampling, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational Measurement, 2016
De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…
Descriptors: Sampling, Research Methodology, Error Patterns, Monte Carlo Methods
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Wooyeol; Cho, Sun-Joo – Applied Measurement in Education, 2017
Utilizing a longitudinal item response model, this study investigated the effect of item parameter drift (IPD) on item parameters and person scores via a Monte Carlo study. Item parameter recovery was investigated for various IPD patterns in terms of bias and root mean-square error (RMSE), and percentage of time the 95% confidence interval covered…
Descriptors: Item Response Theory, Test Items, Bias, Computation
Porter, Kristin E. – Grantee Submission, 2017
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Koziol, Natalie A.; Bovaird, James A. – Educational and Psychological Measurement, 2018
Evaluations of measurement invariance provide essential construct validity evidence--a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or…
Descriptors: Computation, Tests, Error of Measurement, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Samonte, Kelli – Educational and Psychological Measurement, 2015
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Computer Software
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  21