NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 61 to 75 of 311 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lorah, Julie Ann – AERA Online Paper Repository, 2018
The Bayesian information criterion (BIC) can be useful for model selection within multilevel modeling studies. However, the formula for BIC requires a value for N, which is unclear in multilevel models, since N is observed in at least two levels. The present study uses simulated data to evaluate the rate of false positives and power when using a…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Computation, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
CadwalladerOlsker, Todd – Mathematics Teacher, 2019
Students studying statistics often misunderstand what statistics represent. Some of the most well-known misunderstandings of statistics revolve around null hypothesis significance testing. One pervasive misunderstanding is that the calculated p-value represents the probability that the null hypothesis is true, and that if p < 0.05, there is…
Descriptors: Statistics, Mathematics Education, Misconceptions, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Albert, Jim; Hu, Jingchen – Journal of Statistics Education, 2020
Bayesian statistics has gained great momentum since the computational developments of the 1990s. Gradually, advances in Bayesian methodology and software have made Bayesian techniques much more accessible to applied statisticians and, in turn, have potentially transformed Bayesian education at the undergraduate level. This article provides an…
Descriptors: Bayesian Statistics, Computation, Statistics Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
da Silva, Marcelo A.; Liu, Ren; Huggins-Manley, Anne C.; Bazán, Jorge L. – Educational and Psychological Measurement, 2019
Multidimensional item response theory (MIRT) models use data from individual item responses to estimate multiple latent traits of interest, making them useful in educational and psychological measurement, among other areas. When MIRT models are applied in practice, it is not uncommon to see that some items are designed to measure all latent traits…
Descriptors: Item Response Theory, Matrices, Models, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Slater, Stefan; Baker, Ryan – Distance Education, 2019
Considerable attention has been given to methods for knowledge estimation, a category of methods for automatic assessment of a student's degree of skill mastery or knowledge at a specific time. Knowledge estimation is frequently used to make decisions about when a student has reached mastery and is ready to advance to new material, but there has…
Descriptors: Prediction, Mastery Learning, Academic Achievement, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Min, Wookhee; Frankosky, Megan H.; Mott, Bradford W.; Rowe, Jonathan P.; Smith, Andy; Wiebe, Eric; Boyer, Kristy Elizabeth; Lester, James C. – IEEE Transactions on Learning Technologies, 2020
A distinctive feature of game-based learning environments is their capacity for enabling stealth assessment. Stealth assessment analyzes a stream of fine-grained student interaction data from a game-based learning environment to dynamically draw inferences about students' competencies through evidence-centered design. In evidence-centered design,…
Descriptors: Game Based Learning, Student Evaluation, Artificial Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2018
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Kohli, Nidhi; Peralta, Yadira; Zopluoglu, Cengiz; Davison, Mark L. – International Journal of Behavioral Development, 2018
Piecewise mixed-effects models are useful for analyzing longitudinal educational and psychological data sets to model segmented change over time. These models offer an attractive alternative to commonly used quadratic and higher-order polynomial models because the coefficients obtained from fitting the model have meaningful substantive…
Descriptors: Hierarchical Linear Modeling, Longitudinal Studies, Maximum Likelihood Statistics, Bayesian Statistics
Weber, Sebastian; Gelman, Andrew; Lee, Daniel; Betancourt, Michael; Vehtari, Aki; Racine-Poon, Amy – Grantee Submission, 2018
Throughout the different phases of a drug development program, randomized trials are used to establish the tolerability, safety and efficacy of a candidate drug. At each stage one aims to optimize the design of future studies by extrapolation from the available evidence at the time. This includes collected trial data and relevant external data.…
Descriptors: Bayesian Statistics, Data Analysis, Drug Therapy, Pharmacology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Ling; Luo, Wen – Journal of Experimental Education, 2018
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
Descriptors: Statistical Analysis, Models, Classification, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pek, Jolynn; Van Zandt, Trisha – Psychology Learning and Teaching, 2020
Statistical thinking is essential to understanding the nature of scientific results as a consumer. Statistical thinking also facilitates thinking like a scientist. Instead of emphasizing a "correct" procedure for data analysis and its outcome, statistical thinking focuses on the process of data analysis. This article reviews frequentist…
Descriptors: Bayesian Statistics, Thinking Skills, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Wiens, Stefan; Nilsson, Mats E. – Educational and Psychological Measurement, 2017
Because of the continuing debates about statistics, many researchers may feel confused about how to analyze and interpret data. Current guidelines in psychology advocate the use of effect sizes and confidence intervals (CIs). However, researchers may be unsure about how to extract effect sizes from factorial designs. Contrast analysis is helpful…
Descriptors: Data Analysis, Effect Size, Computation, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  21