Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 16 |
| Since 2017 (last 10 years) | 61 |
| Since 2007 (last 20 years) | 228 |
Descriptor
Source
Author
| Cai, Li | 10 |
| Savalei, Victoria | 9 |
| Rabe-Hesketh, Sophia | 7 |
| Yang, Ji Seung | 6 |
| Zhang, Jinming | 6 |
| Bentler, Peter M. | 5 |
| Gelman, Andrew | 4 |
| Haberman, Shelby J. | 4 |
| Harring, Jeffrey R. | 4 |
| Jeon, Minjeong | 4 |
| Ranger, Jochen | 4 |
| More ▼ | |
Publication Type
Education Level
| Elementary Education | 15 |
| Higher Education | 15 |
| Postsecondary Education | 12 |
| Secondary Education | 12 |
| Middle Schools | 11 |
| Junior High Schools | 10 |
| High Schools | 8 |
| Grade 8 | 7 |
| Elementary Secondary Education | 5 |
| Grade 4 | 4 |
| Grade 5 | 4 |
| More ▼ | |
Audience
| Researchers | 4 |
| Practitioners | 1 |
| Teachers | 1 |
Location
| Italy | 5 |
| Germany | 4 |
| South Korea | 4 |
| United States | 3 |
| Australia | 2 |
| Austria | 2 |
| Belgium | 2 |
| Denmark | 2 |
| Michigan | 2 |
| Netherlands | 2 |
| Sweden | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Brusco, Michael – INFORMS Transactions on Education, 2022
Logistic regression is one of the most fundamental tools in predictive analytics. Graduate business analytics students are often familiarized with implementation of logistic regression using Python, R, SPSS, or other software packages. However, an understanding of the underlying maximum likelihood model and the mechanics of estimation are often…
Descriptors: Regression (Statistics), Spreadsheets, Data Analysis, Prediction
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Xiao, Jiaying; Bulut, Okan – Educational and Psychological Measurement, 2020
Large amounts of missing data could distort item parameter estimation and lead to biased ability estimates in educational assessments. Therefore, missing responses should be handled properly before estimating any parameters. In this study, two Monte Carlo simulation studies were conducted to compare the performance of four methods in handling…
Descriptors: Data, Computation, Ability, Maximum Likelihood Statistics
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Fu, Jianbin – ETS Research Report Series, 2019
A maximum marginal likelihood estimation with an expectation-maximization algorithm has been developed for estimating multigroup or mixture multidimensional item response theory models using the generalized partial credit function, graded response function, and 3-parameter logistic function. The procedure includes the estimation of item…
Descriptors: Maximum Likelihood Statistics, Mathematics, Item Response Theory, Expectation
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Shi, Dexin; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual…
Descriptors: Structural Equation Models, Computation, Maximum Likelihood Statistics, Least Squares Statistics
Chun Wang; Ping Chen; Shengyu Jiang – Journal of Educational Measurement, 2020
Many large-scale educational surveys have moved from linear form design to multistage testing (MST) design. One advantage of MST is that it can provide more accurate latent trait [theta] estimates using fewer items than required by linear tests. However, MST generates incomplete response data by design; hence, questions remain as to how to…
Descriptors: Test Construction, Test Items, Adaptive Testing, Maximum Likelihood Statistics
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Park, Soojin; Palardy, Gregory J. – Journal of Educational and Behavioral Statistics, 2020
Estimating the effects of randomized experiments and, by extension, their mediating mechanisms, is often complicated by treatment noncompliance. Two estimation methods for causal mediation in the presence of noncompliance have recently been proposed, the instrumental variable method (IV-mediate) and maximum likelihood method (ML-mediate). However,…
Descriptors: Computation, Compliance (Psychology), Maximum Likelihood Statistics, Statistical Analysis
Debelak, Rudolf; Strobl, Carolin – Educational and Psychological Measurement, 2019
M-fluctuation tests are a recently proposed method for detecting differential item functioning in Rasch models. This article discusses a generalization of this method to two additional item response theory models: the two-parametric logistic model and the three-parametric logistic model with a common guessing parameter. The Type I error rate and…
Descriptors: Test Bias, Item Response Theory, Statistical Analysis, Maximum Likelihood Statistics
Zhou, Sherry; Huggins-Manley, Anne Corinne – Educational and Psychological Measurement, 2020
The semi-generalized partial credit model (Semi-GPCM) has been proposed as a unidimensional modeling method for handling not applicable scale responses and neutral scale responses, and it has been suggested that the model may be of use in handling missing data in scale items. The purpose of this study is to evaluate the ability of the…
Descriptors: Models, Statistical Analysis, Response Style (Tests), Test Items
Nestler, Steffen – Journal of Educational and Behavioral Statistics, 2018
The social relations model (SRM) is a mathematical model that can be used to analyze interpersonal judgment and behavior data. Typically, the SRM is applied to one (i.e., univariate SRM) or two variables (i.e., bivariate SRM), and parameter estimates are obtained by employing an analysis of variance method. Here, we present an extension of the SRM…
Descriptors: Mathematical Models, Interpersonal Relationship, Maximum Likelihood Statistics, Computation

Peer reviewed
Direct link
