Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 14 |
| Since 2007 (last 20 years) | 36 |
Descriptor
Source
Author
| Zhang, Jinming | 3 |
| Finch, Holmes | 2 |
| Kilic, Abdullah Faruk | 2 |
| Little, Todd D. | 2 |
| Shin, Yongyun | 2 |
| Aiken, Leona S. | 1 |
| Atar, Burcu | 1 |
| Beland, Sebastien | 1 |
| Bell, Stephen H. | 1 |
| Bentler, Peter M. | 1 |
| Beretvas, S. Natasha | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 32 |
| Journal Articles | 30 |
| Dissertations/Theses -… | 2 |
| Reports - Evaluative | 2 |
| Numerical/Quantitative Data | 1 |
| Reports - Descriptive | 1 |
Education Level
| Elementary Education | 4 |
| Grade 8 | 2 |
| Junior High Schools | 2 |
| Middle Schools | 2 |
| Secondary Education | 2 |
| Elementary Secondary Education | 1 |
| Grade 10 | 1 |
| Grade 12 | 1 |
| Grade 5 | 1 |
| High Schools | 1 |
| Intermediate Grades | 1 |
| More ▼ | |
Audience
Location
| Michigan | 1 |
| Turkey | 1 |
| United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Early Childhood Longitudinal… | 1 |
| Hopkins Symptom Checklist | 1 |
| National Assessment of… | 1 |
| National Longitudinal Study… | 1 |
| National Longitudinal Survey… | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Sara Dhaene; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In confirmatory factor analysis (CFA), model parameters are usually estimated by iteratively minimizing the Maximum Likelihood (ML) fit function. In optimal circumstances, the ML estimator yields the desirable statistical properties of asymptotic unbiasedness, efficiency, normality, and consistency. In practice, however, real-life data tend to be…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Computation
Chun Wang; Ping Chen; Shengyu Jiang – Journal of Educational Measurement, 2020
Many large-scale educational surveys have moved from linear form design to multistage testing (MST) design. One advantage of MST is that it can provide more accurate latent trait [theta] estimates using fewer items than required by linear tests. However, MST generates incomplete response data by design; hence, questions remain as to how to…
Descriptors: Test Construction, Test Items, Adaptive Testing, Maximum Likelihood Statistics
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Park, Soojin; Palardy, Gregory J. – Journal of Educational and Behavioral Statistics, 2020
Estimating the effects of randomized experiments and, by extension, their mediating mechanisms, is often complicated by treatment noncompliance. Two estimation methods for causal mediation in the presence of noncompliance have recently been proposed, the instrumental variable method (IV-mediate) and maximum likelihood method (ML-mediate). However,…
Descriptors: Computation, Compliance (Psychology), Maximum Likelihood Statistics, Statistical Analysis
Wang, Chun; Chen, Ping; Jiang, Shengyu – Grantee Submission, 2019
Many large-scale educational surveys have moved from linear form design to multistage testing (MST) design. One advantage of MST is that it can provide more accurate latent trait [theta] estimates using fewer items than required by linear tests. However, MST generates incomplete response data by design; hence questions remain as to how to…
Descriptors: Adaptive Testing, Test Items, Item Response Theory, Maximum Likelihood Statistics
Devlieger, Ines; Talloen, Wouter; Rosseel, Yves – Educational and Psychological Measurement, 2019
Factor score regression (FSR) is a popular alternative for structural equation modeling. Naively applying FSR induces bias for the estimators of the regression coefficients. Croon proposed a method to correct for this bias. Next to estimating effects without bias, interest often lies in inference of regression coefficients or in the fit of the…
Descriptors: Regression (Statistics), Computation, Goodness of Fit, Statistical Inference
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2017
Misclassification means the observed category is different from the underlying one and it is a form of measurement error in categorical data. The measurement error in continuous, especially normally distributed, data is well known and studied in the literature. But the misclassification in a binary outcome variable has not yet drawn much attention…
Descriptors: Classification, Regression (Statistics), Statistical Bias, Models
Sahin, Melek Gülsah; Öztürk, Nagihan Boztunç – International Journal of Assessment Tools in Education, 2019
New statistical methods are being added to the literature as a result of scientific developments each and every day. This study aims at investigating one of these, Maximum Likelihood Score Estimation with Fences (MLEF) method, in ca-MST. The results obtained from this study will contribute to both national and international literature since there…
Descriptors: Maximum Likelihood Statistics, Computation, International Assessment, Foreign Countries
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Savalei, Victoria; Rhemtulla, Mijke – Journal of Educational and Behavioral Statistics, 2017
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
Descriptors: Computation, Statistical Analysis, Test Items, Maximum Likelihood Statistics
Finch, Holmes – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
Descriptors: Hierarchical Linear Modeling, Comparative Analysis, Computation, Robustness (Statistics)
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Pfaffel, Andreas; Schober, Barbara; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
A common methodological problem in the evaluation of the predictive validity of selection methods, e.g. in educational and employment selection, is that the correlation between predictor and criterion is biased. Thorndike's (1949) formulas are commonly used to correct for this biased correlation. An alternative approach is to view the selection…
Descriptors: Comparative Analysis, Correlation, Statistical Bias, Maximum Likelihood Statistics

Peer reviewed
Direct link
