Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 10 |
| Since 2007 (last 20 years) | 24 |
Descriptor
| Computation | 28 |
| Probability | 28 |
| Sample Size | 28 |
| Statistical Analysis | 15 |
| Sampling | 9 |
| Correlation | 7 |
| Models | 7 |
| Simulation | 7 |
| Intervals | 5 |
| Monte Carlo Methods | 5 |
| Classification | 4 |
| More ▼ | |
Source
Author
| Shieh, Gwowen | 4 |
| Chan, Wendy | 3 |
| Harris, Ian | 2 |
| Jia, Yue | 2 |
| Stokes, Lynne | 2 |
| Wang, Yan | 2 |
| Algina, James | 1 |
| Althouse, Linda Akel | 1 |
| Amemiya, Yasuo | 1 |
| Brannon, Elizabeth M. | 1 |
| Christensen, Karl Bang | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 23 |
| Reports - Research | 15 |
| Reports - Evaluative | 7 |
| Reports - Descriptive | 5 |
| Speeches/Meeting Papers | 2 |
| Books | 1 |
| Dissertations/Theses -… | 1 |
| Information Analyses | 1 |
| Multilingual/Bilingual… | 1 |
Education Level
| Elementary Education | 4 |
| Secondary Education | 3 |
| Elementary Secondary Education | 2 |
| Grade 4 | 2 |
| Higher Education | 2 |
| Junior High Schools | 2 |
| Middle Schools | 2 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| High Schools | 1 |
| Intermediate Grades | 1 |
| More ▼ | |
Audience
| Practitioners | 1 |
| Researchers | 1 |
| Students | 1 |
| Teachers | 1 |
Location
| Indiana | 1 |
| Mexico | 1 |
| Sierra Leone | 1 |
| Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 4 |
| Early Childhood Longitudinal… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Chan, Wendy – Journal of Research on Educational Effectiveness, 2022
Over the past decade, statisticians have developed methods to improve generalizations from nonrandom samples using propensity score methods. While these methods contribute to generalization research, their effectiveness is limited by small sample sizes. Small area estimation is a class of model-based methods that address the imprecision due to…
Descriptors: Generalization, Probability, Sample Size, Statistical Analysis
Schwarzer, Guido; Efthimiou, Orestis; Rücker, Gerta – Research Synthesis Methods, 2021
The Peto odds ratio is a well-known effect measure in meta-analysis of binary outcomes. For pairwise comparisons, the Peto odds ratio estimator can be severely biased in the situation of unbalanced sample sizes in the two treatment groups or large treatment effects. In this publication, we evaluate Peto odds ratio estimators in the setting of…
Descriptors: Meta Analysis, Sample Size, Computation, Probability
Jamelia Harris – Field Methods, 2024
Not knowing the population size is a common problem in data-limited contexts. Drawing on work in Sierra Leone, this short take outlines a four-step solution to this problem: (1) estimate the population size using expert interviews; (2) verify estimates using interviews with participants sampled; (3) triangulate using secondary data; and (4)…
Descriptors: Foreign Countries, Sample Size, Surveys, Computation
Chan, Wendy; Oh, Jimin – Journal of Experimental Education, 2023
Many generalization studies in education are typically based on a sample of 30-70 schools while the inference population is at least twenty times larger. This small sample to population size ratio limits the precision of design-based estimators of the population average treatment effect. Prior work has shown the potential of small area estimation…
Descriptors: Generalization, Computation, Probability, Sample Size
van Aert, Robbie C. M.; van Assen, Marcel A. L. M.; Viechtbauer, Wolfgang – Research Synthesis Methods, 2019
The effect sizes of studies included in a meta-analysis do often not share a common true effect size due to differences in for instance the design of the studies. Estimates of this so-called between-study variance are usually imprecise. Hence, reporting a confidence interval together with a point estimate of the amount of between-study variance…
Descriptors: Meta Analysis, Computation, Statistical Analysis, Effect Size
Shieh, Gwowen – Journal of Experimental Education, 2019
The analysis of covariance (ANCOVA) is a useful statistical procedure that incorporates covariate features into the adjustment of treatment effects. The consequences of omitted prognostic covariates on the statistical inferences of ANCOVA are well documented in the literature. However, the corresponding influence on sample-size calculations for…
Descriptors: Sample Size, Statistical Analysis, Computation, Accuracy
Nam, Yeji; Hong, Sehee – Educational and Psychological Measurement, 2021
This study investigated the extent to which class-specific parameter estimates are biased by the within-class normality assumption in nonnormal growth mixture modeling (GMM). Monte Carlo simulations for nonnormal GMM were conducted to analyze and compare two strategies for obtaining unbiased parameter estimates: relaxing the within-class normality…
Descriptors: Probability, Models, Statistical Analysis, Statistical Distributions
Qian, Jiahe – ETS Research Report Series, 2020
The finite population correction (FPC) factor is often used to adjust variance estimators for survey data sampled from a finite population without replacement. As a replicated resampling approach, the jackknife approach is usually implemented without the FPC factor incorporated in its variance estimates. A paradigm is proposed to compare the…
Descriptors: Computation, Sampling, Data, Statistical Analysis
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Shieh, Gwowen – Psicologica: International Journal of Methodology and Experimental Psychology, 2013
The a priori determination of a proper sample size necessary to achieve some specified power is an important problem encountered frequently in practical studies. To establish the needed sample size for a two-sample "t" test, researchers may conduct the power analysis by specifying scientifically important values as the underlying population means…
Descriptors: Sample Size, Statistical Analysis, Probability, Computation
Inzunsa Cazares, Santiago – North American Chapter of the International Group for the Psychology of Mathematics Education, 2016
This article presents the results of a qualitative research with a group of 15 university students of social sciences on informal inferential reasoning developed in a computer environment on concepts involved in the confidence intervals. The results indicate that students developed a correct reasoning about sampling variability and visualized…
Descriptors: Qualitative Research, College Students, Inferences, Logical Thinking
Jan, Show-Li; Shieh, Gwowen – Journal of Educational and Behavioral Statistics, 2014
The analysis of variance (ANOVA) is one of the most frequently used statistical analyses in practical applications. Accordingly, the single and multiple comparison procedures are frequently applied to assess the differences among mean effects. However, the underlying assumption of homogeneous variances may not always be tenable. This study…
Descriptors: Sample Size, Statistical Analysis, Computation, Probability
Shieh, Gwowen – Journal of Experimental Education, 2015
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Descriptors: Statistical Analysis, Sample Size, Computation, Effect Size
Orcan, Fatih – ProQuest LLC, 2013
Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…
Descriptors: Structural Equation Models, Evaluation Methods, Simulation, Sample Size
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
