NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Adult Education2
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nianbo Dong; Benjamin Kelcey; Jessaca Spybrook – Journal of Experimental Education, 2024
Multisite cluster randomized trials (MCRTs), in which, the intermediate-level clusters (e.g., classrooms) are randomly assigned to the treatment or control condition within each site (e.g., school), are among the most commonly used experimental designs across a broad range of disciplines. MCRTs often align with the theory that programs are…
Descriptors: Research Design, Randomized Controlled Trials, Statistical Analysis, Sample Size
Clintin P. Davis-Stober; Jason Dana; David Kellen; Sara D. McMullin; Wes Bonifay – Grantee Submission, 2023
Conducting research with human subjects can be difficult because of limited sample sizes and small empirical effects. We demonstrate that this problem can yield patterns of results that are practically indistinguishable from flipping a coin to determine the direction of treatment effects. We use this idea of random conclusions to establish a…
Descriptors: Research Methodology, Sample Size, Effect Size, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Wei; Dong, Nianbo; Maynarad, Rebecca; Spybrook, Jessaca; Kelcey, Ben – Journal of Research on Educational Effectiveness, 2023
Cluster randomized trials (CRTs) are commonly used to evaluate educational interventions, particularly their effectiveness. Recently there has been greater emphasis on using these trials to explore cost-effectiveness. However, methods for establishing the power of cluster randomized cost-effectiveness trials (CRCETs) are limited. This study…
Descriptors: Research Design, Statistical Analysis, Randomized Controlled Trials, Cost Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Jiandong; Luo, Dehui; Weng, Hong; Zeng, Xian-Tao; Lin, Lu; Chu, Haitao; Tong, Tiejun – Research Synthesis Methods, 2020
When reporting the results of clinical studies, some researchers may choose the five-number summary (including the sample median, the first and third quartiles, and the minimum and maximum values) rather than the sample mean and standard deviation (SD), particularly for skewed data. For these studies, when included in a meta-analysis, it is often…
Descriptors: Statistics, Computation, Sample Size, Mathematical Formulas
Peer reviewed Peer reviewed
Direct linkDirect link
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Journal of Educational and Behavioral Statistics, 2023
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Grantee Submission, 2022
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Bulus, Metin – ProQuest LLC, 2017
In education, sample characteristics can be complex due to the nested structure of students, teachers, classrooms, schools, and districts. In the past, not many considerations were given to such complex sampling schemes in statistical power analysis. More recently in the past two decades, however, education scholars have developed tools to conduct…
Descriptors: Educational Research, Regression (Statistics), Research Design, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Konstantopoulos, Spyros – Practical Assessment, Research & Evaluation, 2009
Power computations for one-level experimental designs that assume simple random samples are greatly facilitated by power tables such as those presented in Cohen's book about statistical power analysis. However, in education and the social sciences experimental designs have naturally nested structures and multilevel models are needed to compute the…
Descriptors: Social Science Research, Effect Size, Computation, Tables (Data)
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jance, Marsha; Thomopoulos, Nick – American Journal of Business Education, 2009
The extreme interval values and statistics (expected value, median, mode, standard deviation, and coefficient of variation) for the smallest (min) and largest (max) values of exponentially distributed variables with parameter ? = 1 are examined for different observation (sample) sizes. An extreme interval value g[subscript a] is defined as a…
Descriptors: Intervals, Statistics, Predictor Variables, Sample Size
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Psychometrika, 2006
This paper considers the problem of analysis of correlation coefficients from a multivariate normal population. A unified theorem is derived for the regression model with normally distributed explanatory variables and the general results are employed to provide useful expressions for the distributions of simple, multiple, and partial-multiple…
Descriptors: Intervals, Sample Size, Correlation, Computation