NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20012
What Works Clearinghouse Rating
Showing 1 to 15 of 312 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
J. S. Allison; L. Santana; I. J. H. Visagie – Teaching Statistics: An International Journal for Teachers, 2025
Given sample data, how do you calculate the value of a parameter? While this question is impossible to answer, it is frequently encountered in statistics classes when students are introduced to the distinction between a sample and a population (or between a statistic and a parameter). It is not uncommon for teachers of statistics to also confuse…
Descriptors: Statistics Education, Teaching Methods, Computation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy – Journal of Research on Educational Effectiveness, 2022
Over the past decade, statisticians have developed methods to improve generalizations from nonrandom samples using propensity score methods. While these methods contribute to generalization research, their effectiveness is limited by small sample sizes. Small area estimation is a class of model-based methods that address the imprecision due to…
Descriptors: Generalization, Probability, Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Ziren; Cao, Wenhao; Chu, Haitao; Bazerbachi, Fateh; Siegel, Lianne – Research Synthesis Methods, 2023
A reference interval, or an interval in which a prespecified proportion of measurements from a healthy population are expected to fall, is used to determine whether a person's measurement is typical of a healthy individual. For a specific biomarker, multiple published studies may provide data collected from healthy participants. A reference…
Descriptors: Intervals, Computation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Nianbo Dong; Benjamin Kelcey; Jessaca Spybrook – Journal of Experimental Education, 2024
Multisite cluster randomized trials (MCRTs), in which, the intermediate-level clusters (e.g., classrooms) are randomly assigned to the treatment or control condition within each site (e.g., school), are among the most commonly used experimental designs across a broad range of disciplines. MCRTs often align with the theory that programs are…
Descriptors: Research Design, Randomized Controlled Trials, Statistical Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Schwarzer, Guido; Efthimiou, Orestis; Rücker, Gerta – Research Synthesis Methods, 2021
The Peto odds ratio is a well-known effect measure in meta-analysis of binary outcomes. For pairwise comparisons, the Peto odds ratio estimator can be severely biased in the situation of unbalanced sample sizes in the two treatment groups or large treatment effects. In this publication, we evaluate Peto odds ratio estimators in the setting of…
Descriptors: Meta Analysis, Sample Size, Computation, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bulus, Metin – Journal of Research on Educational Effectiveness, 2022
Although Cattaneo et al. (2019) provided a data-driven framework for power computations for Regression Discontinuity Designs in line with rdrobust Stata and R commands, which allows higher-order functional forms for the score variable when using the non-parametric local polynomial estimation, analogous advancements in their parametric estimation…
Descriptors: Effect Size, Computation, Regression (Statistics), Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hongwen Guo; Matthew S. Johnson; Daniel F. McCaffrey; Lixong Gu – ETS Research Report Series, 2024
The multistage testing (MST) design has been gaining attention and popularity in educational assessments. For testing programs that have small test-taker samples, it is challenging to calibrate new items to replenish the item pool. In the current research, we used the item pools from an operational MST program to illustrate how research studies…
Descriptors: Test Items, Test Construction, Sample Size, Scaling
Kenneth A. Frank; Qinyun Lin; Spiro Maroulis – Grantee Submission, 2023
Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses characterizing the hypothetical unobserved conditions that can alter statistical inferences have had profound impacts on public policy. One of the most ascendant techniques for sensitivity analysis is Oster's (2019) coefficient of proportionality, which…
Descriptors: Computation, Statistical Analysis, Statistical Inference, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Jamelia Harris – Field Methods, 2024
Not knowing the population size is a common problem in data-limited contexts. Drawing on work in Sierra Leone, this short take outlines a four-step solution to this problem: (1) estimate the population size using expert interviews; (2) verify estimates using interviews with participants sampled; (3) triangulate using secondary data; and (4)…
Descriptors: Foreign Countries, Sample Size, Surveys, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Phillip K. Wood – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The logistic and confined exponential curves are frequently used in studies of growth and learning. These models, which are nonlinear in their parameters, can be estimated using structural equation modeling software. This paper proposes a single combined model, a weighted combination of both models. Mplus, Proc Calis, and lavaan code for the model…
Descriptors: Structural Equation Models, Computation, Computer Software, Weighted Scores
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  21