NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Jing; Wang, Chun – Journal of Educational Measurement, 2020
Item nonresponses are prevalent in standardized testing. They happen either when students fail to reach the end of a test due to a time limit or quitting, or when students choose to omit some items strategically. Oftentimes, item nonresponses are nonrandom, and hence, the missing data mechanism needs to be properly modeled. In this paper, we…
Descriptors: Item Response Theory, Test Items, Standardized Tests, Responses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Peer reviewed Peer reviewed
Direct linkDirect link
Pohl, Steffi; Gräfe, Linda; Rose, Norman – Educational and Psychological Measurement, 2014
Data from competence tests usually show a number of missing responses on test items due to both omitted and not-reached items. Different approaches for dealing with missing responses exist, and there are no clear guidelines on which of those to use. While classical approaches rely on an ignorable missing data mechanism, the most recently developed…
Descriptors: Test Items, Achievement Tests, Item Response Theory, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Avetisyan, Marianna; Fox, Jean-Paul – Psicologica: International Journal of Methodology and Experimental Psychology, 2012
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Descriptors: Computation, Sample Size, Responses, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
van Barneveld, Christina – Alberta Journal of Educational Research, 2003
The purpose of this study was to examine the potential effect of false assumptions regarding the motivation of examinees on item calibration and test construction. A simulation study was conducted using data generated by means of several models of examinee item response behaviors (the three-parameter logistic model alone and in combination with…
Descriptors: Simulation, Motivation, Computation, Test Construction