Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 25 |
Descriptor
Source
Author
| Cai, Li | 2 |
| Bandeen-Roche, Karen | 1 |
| Bartolucci, Francesco | 1 |
| Betancourt, Michael | 1 |
| Blackwell, Matthew | 1 |
| Brian Keller | 1 |
| Brubaker, Marcus A. | 1 |
| Budtz-Jorgensen, Esben | 1 |
| Cagnone, Silvia | 1 |
| Cai, Tianji | 1 |
| Carpenter, Bob | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 27 |
| Reports - Research | 18 |
| Reports - Evaluative | 7 |
| Reports - Descriptive | 6 |
| Speeches/Meeting Papers | 1 |
Education Level
| Higher Education | 2 |
| Grade 10 | 1 |
| Grade 12 | 1 |
| Grade 8 | 1 |
| High Schools | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
| Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Gongjun Xu; Zhuoran Shang – Grantee Submission, 2018
This article focuses on a family of restricted latent structure models with wide applications in psychological and educational assessment, where the model parameters are restricted via a latent structure matrix to reflect prespecified assumptions on the latent attributes. Such a latent matrix is often provided by experts and assumed to be correct…
Descriptors: Psychological Evaluation, Educational Assessment, Item Response Theory, Models
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Pearl, Judea – Sociological Methods & Research, 2015
This article summarizes a conceptual framework and simple mathematical methods of estimating the probability that one event was a necessary cause of another, as interpreted by lawmakers. We show that the fusion of observational and experimental data can yield informative bounds that, under certain circumstances, meet legal criteria of causation.…
Descriptors: Mathematical Models, Probability, Computation, Cognitive Mapping
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Ostrow, Korinn; Donnelly, Chistopher; Heffernan, Neil – International Educational Data Mining Society, 2015
As adaptive tutoring systems grow increasingly popular for the completion of classwork and homework, it is crucial to assess the manner in which students are scored within these platforms. The majority of systems, including ASSISTments, return the binary correctness of a student's first attempt at solving each problem. Yet for many teachers,…
Descriptors: Intelligent Tutoring Systems, Scoring, Testing, Credits
Petersen, Janne; Bandeen-Roche, Karen; Budtz-Jorgensen, Esben; Larsen, Klaus Groes – Psychometrika, 2012
Latent class regression models relate covariates and latent constructs such as psychiatric disorders. Though full maximum likelihood estimation is available, estimation is often in three steps: (i) a latent class model is fitted without covariates; (ii) latent class scores are predicted; and (iii) the scores are regressed on covariates. We propose…
Descriptors: Computation, Prediction, Regression (Statistics), Maximum Likelihood Statistics
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Doebler, Anna; Doebler, Philipp; Holling, Heinz – Psychometrika, 2013
The common way to calculate confidence intervals for item response theory models is to assume that the standardized maximum likelihood estimator for the person parameter [theta] is normally distributed. However, this approximation is often inadequate for short and medium test lengths. As a result, the coverage probabilities fall below the given…
Descriptors: Foreign Countries, Item Response Theory, Computation, Hypothesis Testing
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini – Psychometrika, 2012
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
Descriptors: Geometric Concepts, Computation, Probability, Longitudinal Studies
Eggen, Theo J. H. M.; Verhelst, Norman D. – Psicologica: International Journal of Methodology and Experimental Psychology, 2011
This study discusses the justifiability of item parameter estimation in incomplete testing designs in item response theory. Marginal maximum likelihood (MML) as well as conditional maximum likelihood (CML) procedures are considered in three commonly used incomplete designs: random incomplete, multistage testing and targeted testing designs.…
Descriptors: Testing, Item Response Theory, Computation, Maximum Likelihood Statistics

Peer reviewed
Direct link
