NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Viechtbauer, Wolfgang; López-López, José Antonio – Research Synthesis Methods, 2022
Heterogeneity is commonplace in meta-analysis. When heterogeneity is found, researchers often aim to identify predictors that account for at least part of such heterogeneity by using mixed-effects meta-regression models. Another potentially relevant goal is to focus on the amount of heterogeneity as a function of one or more predictors, but this…
Descriptors: Meta Analysis, Models, Predictor Variables, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Veroniki, Areti Angeliki; Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian P. T.; Langan, Dean; Salanti, Georgia – Research Synthesis Methods, 2016
Meta-analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between-study variability, which is typically modelled using a between-study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between-study variance,…
Descriptors: Meta Analysis, Methods, Computation, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan – Research Synthesis Methods, 2013
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…
Descriptors: Computation, Statistical Analysis, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W.-L. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Guidelines, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pustejovsky, James E.; Hedges, Larry V.; Shadish, William R. – Journal of Educational and Behavioral Statistics, 2014
In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general…
Descriptors: Hierarchical Linear Modeling, Effect Size, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Doebler, Philipp; Holling, Heinz; Bohning, Dankmar – Psychological Methods, 2012
We propose 2 related models for the meta-analysis of diagnostic tests. Both models are based on the bivariate normal distribution for transformed sensitivities and false-positive rates. Instead of using the logit as a transformation for these proportions, we employ the "t"[subscript alpha] family of transformations that contains the log, logit,…
Descriptors: Models, Meta Analysis, Diagnostic Tests, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…
Descriptors: Models, Comparative Analysis, Groups, Maximum Likelihood Statistics