Publication Date
In 2025 | 1 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 19 |
Since 2016 (last 10 years) | 75 |
Since 2006 (last 20 years) | 238 |
Descriptor
Computation | 264 |
Maximum Likelihood Statistics | 264 |
Item Response Theory | 98 |
Models | 94 |
Statistical Analysis | 74 |
Simulation | 72 |
Comparative Analysis | 57 |
Error of Measurement | 57 |
Bayesian Statistics | 53 |
Monte Carlo Methods | 52 |
Test Items | 42 |
More ▼ |
Source
Author
Cai, Li | 10 |
Savalei, Victoria | 9 |
Rabe-Hesketh, Sophia | 7 |
Yang, Ji Seung | 6 |
Zhang, Jinming | 6 |
Bentler, Peter M. | 5 |
Gelman, Andrew | 4 |
Haberman, Shelby J. | 4 |
Harring, Jeffrey R. | 4 |
Jeon, Minjeong | 4 |
Ranger, Jochen | 4 |
More ▼ |
Publication Type
Education Level
Elementary Education | 15 |
Higher Education | 15 |
Postsecondary Education | 12 |
Secondary Education | 12 |
Middle Schools | 11 |
Junior High Schools | 10 |
High Schools | 8 |
Grade 8 | 7 |
Elementary Secondary Education | 5 |
Grade 4 | 4 |
Grade 5 | 4 |
More ▼ |
Audience
Researchers | 4 |
Practitioners | 1 |
Teachers | 1 |
Location
Italy | 5 |
Germany | 4 |
South Korea | 4 |
United States | 3 |
Australia | 2 |
Austria | 2 |
Belgium | 2 |
Denmark | 2 |
Michigan | 2 |
Netherlands | 2 |
Sweden | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sara Dhaene; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In confirmatory factor analysis (CFA), model parameters are usually estimated by iteratively minimizing the Maximum Likelihood (ML) fit function. In optimal circumstances, the ML estimator yields the desirable statistical properties of asymptotic unbiasedness, efficiency, normality, and consistency. In practice, however, real-life data tend to be…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Computation
Doran, Harold – Journal of Educational and Behavioral Statistics, 2023
This article is concerned with a subset of numerically stable and scalable algorithms useful to support computationally complex psychometric models in the era of machine learning and massive data. The subset selected here is a core set of numerical methods that should be familiar to computational psychometricians and considers whitening transforms…
Descriptors: Scaling, Algorithms, Psychometrics, Computation
Viechtbauer, Wolfgang; López-López, José Antonio – Research Synthesis Methods, 2022
Heterogeneity is commonplace in meta-analysis. When heterogeneity is found, researchers often aim to identify predictors that account for at least part of such heterogeneity by using mixed-effects meta-regression models. Another potentially relevant goal is to focus on the amount of heterogeneity as a function of one or more predictors, but this…
Descriptors: Meta Analysis, Models, Predictor Variables, Computation
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Grantee Submission, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. (2020) estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores,…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Journal of Educational Measurement, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores, including…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Xinxin Sun – Grantee Submission, 2023
Noncompliance to treatment assignment is widespread in randomized trials and presents challenges in causal inference. In the presence of noncompliance, the most commonly estimated effect of treatment assignment, also known as the intent-to-treat (ITT) effect, is biased. Of interest in this setting is the complier average causal effect (CACE), the…
Descriptors: Compliance (Psychology), Randomized Controlled Trials, Maximum Likelihood Statistics, Computation
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Wang, Shiyu; Xiao, Houping; Cohen, Allan – Journal of Educational and Behavioral Statistics, 2021
An adaptive weight estimation approach is proposed to provide robust latent ability estimation in computerized adaptive testing (CAT) with response revision. This approach assigns different weights to each distinct response to the same item when response revision is allowed in CAT. Two types of weight estimation procedures, nonfunctional and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Robustness (Statistics)
Dimitrov, Dimiter M.; Atanasov, Dimitar V. – Educational and Psychological Measurement, 2021
This study presents a latent (item response theory--like) framework of a recently developed classical approach to test scoring, equating, and item analysis, referred to as "D"-scoring method. Specifically, (a) person and item parameters are estimated under an item response function model on the "D"-scale (from 0 to 1) using…
Descriptors: Scoring, Equated Scores, Item Analysis, Item Response Theory
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models