Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 3 |
Descriptor
| Bayesian Statistics | 3 |
| Computation | 3 |
| Identification | 3 |
| Models | 2 |
| Simulation | 2 |
| Academic Achievement | 1 |
| At Risk Students | 1 |
| Benchmarking | 1 |
| Cognitive Development | 1 |
| Decision Making | 1 |
| Disabilities | 1 |
| More ▼ | |
Author
| Almond, Russell G. | 1 |
| David B. Dunson | 1 |
| Elena A. Erosheva | 1 |
| Gongjun Xu | 1 |
| Kenneth A. Bollen | 1 |
| Teague R. Henry | 1 |
| Yuqi Gu | 1 |
| Zachary F. Fisher | 1 |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 3 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Almond, Russell G. – ETS Research Report Series, 2007
Over the course of instruction, instructors generally collect a great deal of information about each student. Integrating that information intelligently requires models for how a student's proficiency changes over time. Armed with such models, instructors can "filter" the data--more accurately estimate the student's current proficiency…
Descriptors: Markov Processes, Decision Making, Student Evaluation, Learning Processes

Peer reviewed
Direct link
