Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 9 |
Descriptor
| Computation | 11 |
| Factor Analysis | 11 |
| Matrices | 11 |
| Maximum Likelihood Statistics | 5 |
| Correlation | 4 |
| Bayesian Statistics | 3 |
| Evaluation Methods | 3 |
| Models | 3 |
| Structural Equation Models | 3 |
| Cognitive Ability | 2 |
| Data Analysis | 2 |
| More ▼ | |
Source
| Educational and Psychological… | 3 |
| Structural Equation Modeling:… | 3 |
| Grantee Submission | 1 |
| Journal of Educational Data… | 1 |
| Journal of Educational and… | 1 |
| Journal of Psychoeducational… | 1 |
| Psychometrika | 1 |
Author
| Adachi, Kohei | 1 |
| Arav, Marina | 1 |
| Bandalos, Deborah | 1 |
| Bauer, Daniel J. | 1 |
| Cho, Sun-Joo | 1 |
| Ferrer, Emilio | 1 |
| Frank, Kenneth A. | 1 |
| Galyardt, April | 1 |
| Goldin, Ilya | 1 |
| Haiyan Liu | 1 |
| Hayashi, Kentaro | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 10 |
| Reports - Research | 7 |
| Reports - Evaluative | 4 |
Education Level
| Elementary Education | 1 |
| Grade 8 | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| Trends in International… | 1 |
| Wechsler Individual… | 1 |
| Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
McNeish, Daniel; Bauer, Daniel J. – Grantee Submission, 2020
Deciding which random effects to retain is a central decision in mixed effect models. Recent recommendations advise a maximal structure whereby all theoretically relevant random effects are retained. Nonetheless, including many random effects often leads to nonpositive definiteness. A typical remedy is to simplify the random effect structure by…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Factor Analysis, Matrices
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Adachi, Kohei – Psychometrika, 2013
Rubin and Thayer ("Psychometrika," 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one,…
Descriptors: Factor Analysis, Mathematics, Correlation, Maximum Likelihood Statistics
Wetzel, Eunike; Xu, Xueli; von Davier, Matthias – Educational and Psychological Measurement, 2015
In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and…
Descriptors: Surveys, Regression (Statistics), Models, Research Methodology
Schneider, W. Joel – Journal of Psychoeducational Assessment, 2013
Researchers often argue that the structural models of the constructs they study are relevant to clinicians. Unfortunately, few clinicians are able to translate the mathematically precise relationships between latent constructs and observed scores into information that can be usefully applied to individuals. Typically this means that when a new…
Descriptors: Factor Analysis, Psychological Studies, Cognitive Ability, Test Reliability
Song, Hairong; Ferrer, Emilio – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Descriptors: Factor Analysis, Computation, Mathematics, Maximum Likelihood Statistics
Cho, Sun-Joo; Li, Feiming; Bandalos, Deborah – Educational and Psychological Measurement, 2009
The purpose of this study was to investigate the application of the parallel analysis (PA) method for choosing the number of factors in component analysis for situations in which data are dichotomous or ordinal. Although polychoric correlations are sometimes used as input for component analyses, the random data matrices generated for use in PA…
Descriptors: Correlation, Evaluation Methods, Data Analysis, Matrices
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Normal theory maximum likelihood (ML) is by far the most popular estimation and testing method used in structural equation modeling (SEM), and it is the default in most SEM programs. Even though this approach assumes multivariate normality of the data, its use can be justified on the grounds that it is fairly robust to the violations of the…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Maximum Likelihood Statistics
Miyazaki, Yasuo; Frank, Kenneth A. – Journal of Educational and Behavioral Statistics, 2006
In this article the authors develop a model that employs a factor analysis structure at Level 2 of a two-level hierarchical linear model (HLM). The model (HLM2F) imposes a structure on a deficient rank Level 2 covariance matrix [tau], and facilitates estimation of a relatively large [tau] matrix. Maximum likelihood estimators are derived via the…
Descriptors: Methods, Factor Analysis, Computation, Causal Models
Hayashi, Kentaro; Arav, Marina – Educational and Psychological Measurement, 2006
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Descriptors: Bayesian Statistics, Factor Analysis, Correlation, Matrices

Peer reviewed
Direct link
