NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Wilcox, Rand R.; Serang, Sarfaraz – Educational and Psychological Measurement, 2017
The article provides perspectives on p values, null hypothesis testing, and alternative techniques in light of modern robust statistical methods. Null hypothesis testing and "p" values can provide useful information provided they are interpreted in a sound manner, which includes taking into account insights and advances that have…
Descriptors: Hypothesis Testing, Bayesian Statistics, Computation, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Gobert, Janice D.; Moussavi, Raha; Li, Haiying; Sao Pedro, Michael; Dickler, Rachel – Grantee Submission, 2018
This chapter addresses students' data interpretation, a key NGSS inquiry practice, with which students have several different types of difficulties. In this work, we unpack the difficulties associated with data interpretation from those associated with warranting claims. We do this within the context of Inq-ITS (Inquiry Intelligent Tutoring…
Descriptors: Scaffolding (Teaching Technique), Data Interpretation, Intelligent Tutoring Systems, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Scheerens, Jaap; Luyten, Hans; van den Berg, Stéphanie M.; Glas, Cees A. W. – Educational Research and Evaluation, 2015
As expectations of the economic impact of educational attainment are soaring (Hanushek & Woessmann, 2009) and conjectures about successful national educational reforms (Mourshed, Chijioke, & Barber, 2010) are welcomed by educational policy-makers in many countries, a careful assessment of the empirical evidence for these kinds of claims is…
Descriptors: Foreign Countries, Educational Attainment, Educational Change, Comparative Education