NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Chen Wang – ProQuest LLC, 2024
Computational learning theory studies the design and analysis of learning algorithms, and it is integral to the foundation of machine learning. In the modern era, classical computational learning theory is growingly unable to catch up with new practical demands. In particular, problems arise in the following aspects: i). "scalability":…
Descriptors: Computation, Learning Theories, Algorithms, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Pu Wang; Yifeng Lin; Tiesong Zhao – Education and Information Technologies, 2025
With the emergence of Artificial Intelligence (AI), smart education has become an attractive topic. In a smart education system, automated classrooms and examination rooms could help reduce the economic cost of teaching, and thus improve teaching efficiency. However, existing AI algorithms suffer from low surveillance accuracies and high…
Descriptors: Supervision, Artificial Intelligence, Technology Uses in Education, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Franz Classe; Christoph Kern – Educational and Psychological Measurement, 2024
We develop a "latent variable forest" (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on "confirmatory factor analysis" (CFA) models with ordinal and/or numerical response variables. Through parametric model…
Descriptors: Algorithms, Item Response Theory, Artificial Intelligence, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bin Tan; Hao-Yue Jin; Maria Cutumisu – Computer Science Education, 2024
Background and Context: Computational thinking (CT) has been increasingly added to K-12 curricula, prompting teachers to grade more and more CT artifacts. This has led to a rise in automated CT assessment tools. Objective: This study examines the scope and characteristics of publications that use machine learning (ML) approaches to assess…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Huiling Ding – College Composition and Communication, 2025
In response to disruptions introduced to the job market by AI résumé screeners, this article introduces a novel theoretical framework for the life cycle of artificial intelligence systems to help unblackbox résumé screening AI systems. It then applies the AI life cycle framework to a digital case study of RChilli's job-résumé matching algorithm.…
Descriptors: Artificial Intelligence, Resumes (Personal), Algorithms, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Salehzadeh, Roya; Rivera, Brian; Man, Kaiwen; Jalili, Nader; Soylu, Firat – Journal of Numerical Cognition, 2023
In this study, we used multivariate decoding methods to study processing differences between canonical (montring and count) and noncanonical finger numeral configurations (FNCs). While previous research investigated these processing differences using behavioral and event-related potentials (ERP) methods, conventional univariate ERP analyses focus…
Descriptors: Cognitive Processes, Human Body, Artificial Intelligence, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Man Kit Lee, Stephen; Liu, Hey Wing; Tong, Shelley Xiuli – Scientific Studies of Reading, 2023
Purpose: Dyslexia is characterized by its diverse causes and heterogeneous manifestations. Chinese children with dyslexia exhibit orthographic, phonological, and semantic deficits across character and radical levels when writing. However, whether character dictation can be used to distinguish children with dyslexia from their typically developing…
Descriptors: Foreign Countries, Dyslexia, Disability Identification, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Hao-Yue; Cutumisu, Maria – Education and Information Technologies, 2023
Computational thinking (CT) skills of pre-service teachers have been explored extensively, but the effectiveness of CT training has yielded mixed results in previous studies. Thus, it is necessary to identify patterns in the relationships between predictors of CT and CT skills to further support CT development. This study developed an online CT…
Descriptors: Preservice Teachers, Computation, Thinking Skills, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Zexuan Pan; Maria Cutumisu – AERA Online Paper Repository, 2023
Computational thinking (CT) is a fundamental ability for learners in today's society. Although CT assessments and interventions have been studied widely, little is known about CT predictions. This study predicted students' CT achievement in the ICILS 2018 using five machine learning models. These models were trained on the data from five European…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ting-Chia Hsu; Tai-Ping Hsu – Education and Information Technologies, 2025
While computational thinking (CT) is crucial for modern education, integrating artificial intelligence (AI) into learning poses challenges due to its complexity. Generative AI Drawing (GAID) offers an intuitive method for teaching AI concepts, but barriers such as restrictive access for younger students and limited instructional frameworks hinder…
Descriptors: Teaching Methods, Artificial Intelligence, Educational Games, Freehand Drawing
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2