Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 5 |
| Since 2017 (last 10 years) | 18 |
Descriptor
Source
Author
| Elliott, Stephen N. | 4 |
| Nese, Joseph F. T. | 4 |
| Schulte, Ann C. | 4 |
| Stevens, Joseph J. | 4 |
| Tindal, Gerald | 4 |
| Yel, Nedim | 4 |
| Anderson, Daniel | 3 |
| Fazlul, Ishtiaque | 2 |
| Koedel, Cory | 2 |
| Marcoulides, Katerina M. | 2 |
| Matta, Tyler | 2 |
| More ▼ | |
Publication Type
| Journal Articles | 12 |
| Reports - Research | 12 |
| Reports - Descriptive | 4 |
| Dissertations/Theses -… | 1 |
| Reports - Evaluative | 1 |
Education Level
| Elementary Education | 8 |
| Middle Schools | 4 |
| Early Childhood Education | 3 |
| Grade 3 | 3 |
| Grade 5 | 3 |
| Intermediate Grades | 3 |
| Primary Education | 3 |
| Grade 4 | 2 |
| Grade 6 | 2 |
| Junior High Schools | 2 |
| Secondary Education | 2 |
| More ▼ | |
Audience
Location
| Missouri | 2 |
| Arizona | 1 |
| North Carolina | 1 |
| Oregon | 1 |
| Pennsylvania | 1 |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
| Iowa Tests of Basic Skills | 1 |
| Measures of Academic Progress | 1 |
| North Carolina End of Course… | 1 |
What Works Clearinghouse Rating
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Marcoulides, Katerina M. – International Journal of Behavioral Development, 2021
The purpose of this research note is to introduce a latent growth curve reconstruction approach based on the Tabu search algorithm. The approach algorithmically enables researchers to optimally determine at both the individual and the group levels the order of the polynomial needed to represent the latent growth curve model. The procedure is…
Descriptors: Growth Models, Computation, Mathematics, Longitudinal Studies
Brendan A. Schuetze – Educational Psychology Review, 2024
The computational model of school achievement represents a novel approach to theorizing school achievement, conceptualizing educational interventions as modifications to students' learning curves. By modeling the process and products of educational achievement simultaneously, this tool addresses several unresolved questions in educational…
Descriptors: Computation, Growth Models, Academic Achievement, Student Evaluation
Nathan P. Helsabeck – ProQuest LLC, 2022
Assessing student achievement over multiple years is complicated by students' annual matriculation through different classrooms. The process of matriculation, or annual classroom change, threatens the validity of statistical inferences because it violates the independence of observations necessary in a regression context. The current study…
Descriptors: Growth Models, Academic Achievement, Student Promotion, Statistical Analysis
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Tomek, Sara; Robinson, Cecil – Measurement: Interdisciplinary Research and Perspectives, 2021
Typical longitudinal growth models assume constant functional growth over time. However, there are often conditions where trajectories may not be constant over time. For example, trajectories of psychological behaviors may vary based on a participant's age, or conversely, participants may experience an intervention that causes trajectories to…
Descriptors: Growth Models, Statistical Analysis, Hierarchical Linear Modeling, Computation
Fazlul, Ishtiaque; Koedel, Cory; Parsons, Eric; Qian, Cheng – AERA Open, 2021
We evaluate the feasibility of estimating test-score growth for schools and districts with a gap year in test data. Our research design uses a simulated gap year in testing when a true test gap did not occur, which facilitates comparisons of district- and school-level growth estimates with and without a gap year. We find that growth estimates…
Descriptors: Scores, Achievement Gains, Computation, School Districts
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2019
Longitudinal data analysis has received widespread interest throughout educational, behavioral, and social science research, with latent growth curve modeling currently being one of the most popular methods of analysis. Despite the popularity of latent growth curve modeling, limited attention has been directed toward understanding the issues of…
Descriptors: Reliability, Longitudinal Studies, Growth Models, Structural Equation Models
Wells, Craig S.; Sireci, Stephen G. – Applied Measurement in Education, 2020
Student growth percentiles (SGPs) are currently used by several states and school districts to provide information about individual students as well as to evaluate teachers, schools, and school districts. For SGPs to be defensible for these purposes, they should be reliable. In this study, we examine the amount of systematic and random error in…
Descriptors: Growth Models, Reliability, Scores, Error Patterns
Fazlul, Ishtiaque; Koedel, Cory; Parsons, Eric; Qian, Cheng – National Center for Analysis of Longitudinal Data in Education Research (CALDER), 2021
We evaluate the feasibility of estimating test-score growth with a gap year in testing data, informing the scenario when state testing resumes after the 2020 COVID-19-induced test stoppage. Our research design is to simulate a gap year in testing using pre-COVID-19 data--when a true test gap did not occur--which facilitates comparisons of…
Descriptors: Scores, Achievement Gains, Computation, Growth Models
Li, Wei; Konstantopoulos, Spyros – Journal of Experimental Education, 2019
Education experiments frequently assign students to treatment or control conditions within schools. Longitudinal components added in these studies (e.g., students followed over time) allow researchers to assess treatment effects in average rates of change (e.g., linear or quadratic). We provide methods for a priori power analysis in three-level…
Descriptors: Research Design, Statistical Analysis, Sample Size, Effect Size
Soland, James; Thum, Yeow Meng – Journal of Research on Educational Effectiveness, 2022
Sources of longitudinal achievement data are increasing thanks partially to the expansion of available interim assessments. These tests are often used to monitor the progress of students, classrooms, and schools within and across school years. Yet, few statistical models equipped to approximate the distinctly seasonal patterns in the data exist,…
Descriptors: Academic Achievement, Longitudinal Studies, Data Use, Computation
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Schulte, Ann C.; Stevens, Joseph J.; Nese, Joseph F. T.; Yel, Nedim; Tindal, Gerald; Elliott, Stephen N. – National Center on Assessment and Accountability for Special Education, 2018
This technical report is one of a series of four technical reports that describe the results of a study comparing eight alternative models for estimating school academic achievement using data from the Arizona, North Carolina, Oregon, and Pennsylvania accountability systems. The purpose of these reports was to evaluate a broad range of models…
Descriptors: School Effectiveness, Models, Computation, Comparative Analysis
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
