NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 31 to 45 of 331 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wei Xu; Le-Ying Yang; Xiao Liu; Pin-Nv Jin – Education and Information Technologies, 2024
Teacher feedback is the key to online collaborative discussion. To investigate the effects of different forms of teacher feedback intervention on learners' cognitive and emotional interactions in online collaborative discussion, this study collected collaborative discussion text data of online collaborative learners. Based on the framework of…
Descriptors: Feedback (Response), Teacher Student Relationship, Communities of Practice, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, Yutian T.; Song, Hairong; Shi, Dexin; Liu, Zhengkui – Educational and Psychological Measurement, 2021
Conventional approaches for selecting a reference indicator (RI) could lead to misleading results in testing for measurement invariance (MI). Several newer quantitative methods have been available for more rigorous RI selection. However, it is still unknown how well these methods perform in terms of correctly identifying a truly invariant item to…
Descriptors: Measurement, Statistical Analysis, Selection, Comparative Analysis
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu – Educational and Psychological Measurement, 2023
The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs)…
Descriptors: Test Items, Classification, Bayesian Statistics, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Efthimiou, Orestis; White, Ian R. – Research Synthesis Methods, 2020
Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, eg, when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we…
Descriptors: Models, Meta Analysis, Network Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Rodríguez-Ferreiro, Javier; Vadillo, Miguel A.; Barberia, Itxaso – Teaching of Psychology, 2023
Background: We have previously presented two educational interventions aimed to diminish causal illusions and promote critical thinking. In both cases, these interventions reduced causal illusions developed in response to active contingency learning tasks, in which participants were able to decide whether to introduce the potential cause in each…
Descriptors: Sampling, Inferences, Psychology, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Logacev, Pavel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
A number of studies have found evidence for the so-called "ambiguity advantage," that is, faster processing of ambiguous sentences compared with unambiguous counterparts. While a number of proposals regarding the mechanism underlying this phenomenon have been made, the empirical evidence so far is far from unequivocal. It is compatible…
Descriptors: Phrase Structure, Accuracy, Ambiguity (Semantics), Sentences
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Albert, Isabelle; Makowski, David – Research Synthesis Methods, 2019
The mixed treatment comparison (MTC) method has been proposed to combine results across trials comparing several treatments. MTC allows coherent judgments on which of the treatments is the most effective. It produces estimates of the relative effects of each treatment compared with every other treatment by pooling direct and indirect evidence. In…
Descriptors: Research Methodology, Agriculture, Agricultural Production, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sandry, Joshua; Ricker, Timothy J. – Cognitive Research: Principles and Implications, 2022
The drift diffusion model (DDM) is a widely applied computational model of decision making that allows differentiation between latent cognitive and residual processes. One main assumption of the DDM that has undergone little empirical testing is the level of independence between cognitive and motor responses. If true, widespread incorporation of…
Descriptors: Decision Making, Motor Reactions, Cognitive Processes, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Piepho, Hans-Peter; Madden, Laurence V. – Research Synthesis Methods, 2022
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One…
Descriptors: Medical Research, Meta Analysis, Networks, Drug Therapy
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  23