NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1418035
Record Type: Journal
Publication Date: 2024
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-1756-1108
Available Date: N/A
Supporting Submicroscopic Reasoning in Students' Explanations of Absorption Phenomena Using a Simulation-Based Activity
Chemistry Education Research and Practice, v25 n1 p133-150 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum and its applicability to analytical techniques, students' use of the model is not commonly investigated. Specifically, no previous work has explored how students connect the Beer-Lambert law to absorption phenomena using submicroscopic-level reasoning, which is important for understanding light absorption at the particle level. The incorporation of visual-conceptual tools (such as animations and simulations) into instruction has been shown to be effective in conveying key points about particle-level reasoning and facilitating connections among the macroscopic, submicroscopic, and symbolic domains. This study evaluates the extent to which a previously reported simulation-based virtual laboratory activity (BLSim) is associated with students' use of particle-level models when explaining absorption phenomena. Two groups of analytical chemistry students completed a series of tasks that prompted them to construct explanations of absorption phenomena, with one group having completed the simulation-based activity prior to the assessment tasks. Student responses were coded using Johnstone's triad. When comparing work from the two student groups, chi-square tests revealed statistically significant associations (with approximately medium to large effect sizes) between students using the simulation and employing particle-level reasoning. That said, submicroscopic-level reasoning did not always provide more explanatory power to students' answers. Additionally, we observed the productive use of a variety of submicroscopic light-matter interaction models. We conjecture that engaging with BLSim provided new submicroscopic-level resources for students to leverage in explanations and predictions of absorption phenomena.
Royal Society of Chemistry. Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK. Tel: +44-1223 420066; Fax: +44-1223 423623; e-mail: cerp@rsc.org; Web site: http://www.rsc.org/cerp
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A