Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Comparative Analysis | 14 |
| Maximum Likelihood Statistics | 14 |
| Statistical Bias | 14 |
| Computation | 11 |
| Error of Measurement | 5 |
| Monte Carlo Methods | 5 |
| Sample Size | 5 |
| Statistical Analysis | 5 |
| Bayesian Statistics | 4 |
| Item Response Theory | 4 |
| Test Items | 4 |
| More ▼ | |
Source
Author
| Zhang, Jinming | 3 |
| Bowden, Jack | 1 |
| Can, Seda | 1 |
| Clogg, Clifford C. | 1 |
| Coughlin, Kevin B. | 1 |
| Dogan, Nuri | 1 |
| Finch, Holmes | 1 |
| Gifford, Janice A. | 1 |
| Higgins, Julian P. T. | 1 |
| Hox, Joop | 1 |
| Jackson, Dan | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 13 |
| Reports - Research | 11 |
| Reports - Evaluative | 2 |
| Dissertations/Theses -… | 1 |
| Information Analyses | 1 |
| Numerical/Quantitative Data | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
| Turkey | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Langan, Dean; Higgins, Julian P. T.; Jackson, Dan; Bowden, Jack; Veroniki, Areti Angeliki; Kontopantelis, Evangelos; Viechtbauer, Wolfgang; Simmonds, Mark – Research Synthesis Methods, 2019
Studies combined in a meta-analysis often have differences in their design and conduct that can lead to heterogeneous results. A random-effects model accounts for these differences in the underlying study effects, which includes a heterogeneity variance parameter. The DerSimonian-Laird method is often used to estimate the heterogeneity variance,…
Descriptors: Simulation, Meta Analysis, Health, Comparative Analysis
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Savalei, Victoria; Rhemtulla, Mijke – Journal of Educational and Behavioral Statistics, 2017
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
Descriptors: Computation, Statistical Analysis, Test Items, Maximum Likelihood Statistics
Finch, Holmes – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
Descriptors: Hierarchical Linear Modeling, Comparative Analysis, Computation, Robustness (Statistics)
Pfaffel, Andreas; Schober, Barbara; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
A common methodological problem in the evaluation of the predictive validity of selection methods, e.g. in educational and employment selection, is that the correlation between predictor and criterion is biased. Thorndike's (1949) formulas are commonly used to correct for this biased correlation. An alternative approach is to view the selection…
Descriptors: Comparative Analysis, Correlation, Statistical Bias, Maximum Likelihood Statistics
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics
Coughlin, Kevin B. – ProQuest LLC, 2013
This study is intended to provide researchers with empirically derived guidelines for conducting factor analytic studies in research contexts that include dichotomous and continuous levels of measurement. This study is based on the hypotheses that ordinary least squares (OLS) factor analysis will yield more accurate parameter estimates than…
Descriptors: Comparative Analysis, Least Squares Statistics, Maximum Likelihood Statistics, Factor Analysis
Sun, Shuyan; Pan, Wei – Journal of Experimental Education, 2013
Regression discontinuity design is an alternative to randomized experiments to make causal inference when random assignment is not possible. This article first presents the formal identification and estimation of regression discontinuity treatment effects in the framework of Rubin's causal model, followed by a thorough literature review of…
Descriptors: Regression (Statistics), Computation, Accuracy, Causal Models
Lee, Yi-Hsuan; Zhang, Jinming – ETS Research Report Series, 2008
The method of maximum-likelihood is typically applied to item response theory (IRT) models when the ability parameter is estimated while conditioning on the true item parameters. In practice, the item parameters are unknown and need to be estimated first from a calibration sample. Lewis (1985) and Zhang and Lu (2007) proposed the expected response…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Ability
Zhang, Jinming; Lu, Ting – ETS Research Report Series, 2007
In practical applications of item response theory (IRT), item parameters are usually estimated first from a calibration sample. After treating these estimates as fixed and known, ability parameters are then estimated. However, the statistical inferences based on the estimated abilities can be misleading if the uncertainty of the item parameter…
Descriptors: Item Response Theory, Ability, Error of Measurement, Maximum Likelihood Statistics
Peer reviewedClogg, Clifford C.; And Others – Journal of Educational Statistics, 1992
Methods for assessing collapsibility in regression problems are described, including possible extensions to the class of generalized linear models. These procedures, with terminology borrowed from the contingency table field, can be used in experimental settings or nonexperimental settings where two models viewed as alternative explanations are…
Descriptors: Comparative Analysis, Equations (Mathematics), Mathematical Models, Maximum Likelihood Statistics
Zhang, Jinming – ETS Research Report Series, 2005
Lord's bias function and the weighted likelihood estimation method are effective in reducing the bias of the maximum likelihood estimate of an examinee's ability under the assumption that the true item parameters are known. This paper presents simulation studies to determine the effectiveness of these two methods in reducing the bias when the item…
Descriptors: Statistical Bias, Maximum Likelihood Statistics, Computation, Ability
Peer reviewedGifford, Janice A.; Swaminathan, Hariharan – Applied Psychological Measurement, 1990
The effects of priors and amount of bias in the Bayesian approach to the estimation problem in item response models are examined using simulation studies. Different specifications of prior information have only modest effects on Bayesian estimates, which are less biased than joint maximum likelihood estimates for small samples. (TJH)
Descriptors: Bayesian Statistics, Comparative Analysis, Computer Simulation, Estimation (Mathematics)

Direct link
