Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 11 |
| Since 2007 (last 20 years) | 39 |
Descriptor
| Comparative Analysis | 40 |
| Computation | 40 |
| Statistical Bias | 40 |
| Statistical Analysis | 19 |
| Error of Measurement | 15 |
| Monte Carlo Methods | 15 |
| Maximum Likelihood Statistics | 11 |
| Item Response Theory | 9 |
| Sample Size | 9 |
| Accuracy | 8 |
| Test Items | 7 |
| More ▼ | |
Source
Author
| Zhang, Jinming | 3 |
| Dong, Nianbo | 2 |
| Austin, Peter C. | 1 |
| Avi Feller | 1 |
| Bai, Haiyan | 1 |
| Baio, Gianluca | 1 |
| Bifulco, Robert | 1 |
| Botella, Juan | 1 |
| Bray, Bethany C. | 1 |
| Cai, Li | 1 |
| Can, Seda | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 34 |
| Journal Articles | 32 |
| Reports - Evaluative | 5 |
| Numerical/Quantitative Data | 2 |
| Dissertations/Theses -… | 1 |
| Speeches/Meeting Papers | 1 |
| Tests/Questionnaires | 1 |
Education Level
| Secondary Education | 2 |
| Elementary Education | 1 |
| Grade 10 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| High Schools | 1 |
| Higher Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
Audience
| Researchers | 1 |
Location
| Connecticut | 1 |
| Florida | 1 |
| Germany | 1 |
| Indiana | 1 |
| Italy | 1 |
| Massachusetts | 1 |
| New York | 1 |
| North Carolina | 1 |
| Sweden | 1 |
| Tennessee | 1 |
| Texas | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Connecticut Mastery Testing… | 1 |
| International Association for… | 1 |
| National Longitudinal Study… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2021
Population-adjusted indirect comparisons estimate treatment effects when access to individual patient data is limited and there are cross-trial differences in effect modifiers. Popular methods include matching-adjusted indirect comparison (MAIC) and simulated treatment comparison (STC). There is limited formal evaluation of these methods and…
Descriptors: Statistical Analysis, Computation, Outcomes of Treatment, Patients
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Mai, Yujiao; Zhang, Zhiyong; Wen, Zhonglin – Grantee Submission, 2018
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Comparative Analysis, Statistical Bias
Scott, Marc A.; Diakow, Ronli; Hill, Jennifer L.; Middleton, Joel A. – Grantee Submission, 2018
We are concerned with the unbiased estimation of a treatment effect in the context of non-experimental studies with grouped or multilevel data. When analyzing such data with this goal, practitioners typically include as many predictors (controls) as possible, in an attempt to satisfy ignorability of the treatment assignment. In the multilevel…
Descriptors: Statistical Bias, Computation, Comparative Analysis, Hierarchical Linear Modeling
Finch, W. Holmes; Shim, Sungok Serena – Educational and Psychological Measurement, 2018
Collection and analysis of longitudinal data is an important tool in understanding growth and development over time in a whole range of human endeavors. Ideally, researchers working in the longitudinal framework are able to collect data at more than two points in time, as this will provide them with the potential for a deeper understanding of the…
Descriptors: Comparative Analysis, Computation, Time, Change
Savalei, Victoria; Rhemtulla, Mijke – Journal of Educational and Behavioral Statistics, 2017
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
Descriptors: Computation, Statistical Analysis, Test Items, Maximum Likelihood Statistics
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Finch, Holmes – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
Descriptors: Hierarchical Linear Modeling, Comparative Analysis, Computation, Robustness (Statistics)
Pfaffel, Andreas; Schober, Barbara; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
A common methodological problem in the evaluation of the predictive validity of selection methods, e.g. in educational and employment selection, is that the correlation between predictor and criterion is biased. Thorndike's (1949) formulas are commonly used to correct for this biased correlation. An alternative approach is to view the selection…
Descriptors: Comparative Analysis, Correlation, Statistical Bias, Maximum Likelihood Statistics
Feller, Avi; Miratrix, Luke – Society for Research on Educational Effectiveness, 2015
The goal of this study is to better understand how methods for estimating treatment effects of latent groups operate. In particular, the authors identify where violations of assumptions can lead to biased estimates, and explore how covariates can be critical in the estimation process. For each set of approaches, the authors first review the…
Descriptors: Computation, Statistical Analysis, Statistical Bias, Outcomes of Treatment
Maeda, Hotaka; Zhang, Bo – International Journal of Testing, 2017
The omega (?) statistic is reputed to be one of the best indices for detecting answer copying on multiple choice tests, but its performance relies on the accurate estimation of copier ability, which is challenging because responses from the copiers may have been contaminated. We propose an algorithm that aims to identify and delete the suspected…
Descriptors: Cheating, Test Items, Mathematics, Statistics
Dong, Nianbo; Lipsey, Mark – Society for Research on Educational Effectiveness, 2014
When randomized control trials (RCT) are not feasible, researchers seek other methods to make causal inference, e.g., propensity score methods. One of the underlined assumptions for the propensity score methods to obtain unbiased treatment effect estimates is the ignorability assumption, that is, conditional on the propensity score, treatment…
Descriptors: Educational Research, Benchmarking, Statistical Analysis, Computation
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size

Peer reviewed
Direct link
