Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 51 |
Since 2006 (last 20 years) | 121 |
Descriptor
Comparative Analysis | 148 |
Probability | 148 |
Statistical Analysis | 148 |
Scores | 27 |
Foreign Countries | 25 |
Models | 25 |
Correlation | 21 |
Predictor Variables | 18 |
Control Groups | 17 |
Regression (Statistics) | 17 |
Experimental Groups | 16 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Researchers | 2 |
Teachers | 2 |
Location
United Kingdom | 5 |
Florida | 4 |
Texas | 4 |
Georgia | 3 |
Germany | 3 |
Maryland | 3 |
Massachusetts | 3 |
North Carolina | 3 |
Australia | 2 |
California | 2 |
Canada | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Block, Per; Stadtfeld, Christoph; Snijders, Tom A. B. – Sociological Methods & Research, 2019
Two approaches for the statistical analysis of social network generation are widely used; the tie-oriented exponential random graph model (ERGM) and the stochastic actor-oriented model (SAOM) or Siena model. While the choice for either model by empirical researchers often seems arbitrary, there are important differences between these models that…
Descriptors: Statistical Analysis, Social Networks, Models, Network Analysis
Mathes, Tim; Kuss, Oliver – Research Synthesis Methods, 2018
Meta-analyses often include only a small number of studies ([less than or equal to]5). Estimating between-study heterogeneity is difficult in this situation. An inaccurate estimation of heterogeneity can result in biased effect estimates and too narrow confidence intervals. The beta-binominal model has shown good statistical properties for…
Descriptors: Comparative Analysis, Meta Analysis, Probability, Statistical Analysis
Hong, Guanglei; Qin, Xu; Yang, Fan – Journal of Educational and Behavioral Statistics, 2018
Through a sensitivity analysis, the analyst attempts to determine whether a conclusion of causal inference could be easily reversed by a plausible violation of an identification assumption. Analytic conclusions that are harder to alter by such a violation are expected to add a higher value to scientific knowledge about causality. This article…
Descriptors: Statistical Inference, Probability, Statistical Bias, Statistical Analysis
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Desjardins, Christopher David – Journal of Experimental Education, 2016
The purpose of this article is to develop a statistical model that best explains variability in the number of school days suspended. Number of school days suspended is a count variable that may be zero-inflated and overdispersed relative to a Poisson model. Four models were examined: Poisson, negative binomial, Poisson hurdle, and negative…
Descriptors: Suspension, Statistical Analysis, Models, Data
Gruver, Nate; Malik, Ali; Capoor, Brahm; Piech, Chris; Stevens, Mitchell L.; Paepcke, Andreas – International Educational Data Mining Society, 2019
Understanding large-scale patterns in student course enrollment is a problem of great interest to university administrators and educational researchers. Yet important decisions are often made without a good quantitative framework of the process underlying student choices. We propose a probabilistic approach to modelling course enrollment…
Descriptors: Models, Course Selection (Students), Enrollment, Decision Making
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Adair, Desmond; Jaeger, Martin; Price, Owen M. – International Journal of Higher Education, 2018
The use of a portfolio curriculum approach, when teaching a university introductory statistics and probability course to engineering students, is developed and evaluated. The portfolio curriculum approach, so called, as the students need to keep extensive records both as hard copies and digitally of reading materials, interactions with faculty,…
Descriptors: Active Learning, Introductory Courses, Statistics, Probability
Zhou, Xiang; Xie, Yu – Sociological Methods & Research, 2016
Since the seminal introduction of the propensity score (PS) by Rosenbaum and Rubin, PS-based methods have been widely used for drawing causal inferences in the behavioral and social sciences. However, the PS approach depends on the ignorability assumption: there are no unobserved confounders once observed covariates are taken into account. For…
Descriptors: Probability, Statistical Inference, Comparative Analysis, Longitudinal Studies
Akhmetzyanova, Anna I. – International Journal of Environmental and Science Education, 2016
The relevance of this problem is related to the urgent need to explain peculiarities of anticipation and probabilistic forecasting in adolescence. It has revealed a contradiction: on the one hand, the problem of anticipation in ontogenesis is well developed, and, on the other hand, there remain understudied mechanisms of anticipation in…
Descriptors: Probability, Prediction, Adolescents, Foreign Countries
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Tipton, Elizabeth – Journal of Educational and Behavioral Statistics, 2014
Although a large-scale experiment can provide an estimate of the average causal impact for a program, the sample of sites included in the experiment is often not drawn randomly from the inference population of interest. In this article, we provide a generalizability index that can be used to assess the degree of similarity between the sample of…
Descriptors: Experiments, Comparative Analysis, Experimental Groups, Generalization
Pan, Yilin – Society for Research on Educational Effectiveness, 2016
Given the necessity to bridge the gap between what happened and what is likely to happen, this paper aims to explore how to apply Bayesian inference to cost-effectiveness analysis so as to capture the uncertainty of a ratio-type efficiency measure. The first part of the paper summarizes the characteristics of the evaluation data that are commonly…
Descriptors: Resource Allocation, Cost Effectiveness, Bayesian Statistics, Statistical Analysis
Gill, Tim – Research Papers in Education, 2018
In the UK, students who want to progress to higher education have a number of possible pathways at age 16. The most common of these is traditional, academic focussed, 'A' levels, but increasingly students are taking alternative qualifications (e.g. BTECs, IB, Pre-U). The focus of this research is to infer which (if any) of these qualifications are…
Descriptors: Statistical Analysis, Comparative Analysis, College Readiness, College Preparation
Sneyers, Eline; De Witte, Kristof – Studies in Higher Education, 2017
This paper examines the effect of the introduction of an academic dismissal (AD) policy (i.e. an intervention, which can lead to compulsory student withdrawal) on student dropout, student graduation rates and satisfaction with the study program. Using a difference-in-differences type of estimator, we compare programs that introduced an AD policy…
Descriptors: School Policy, Dropouts, Graduation Rate, Dropout Rate