NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 53 results Save | Export
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Journal of Educational and Behavioral Statistics, 2023
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Diaz, Emily; Brooks, Gordon; Johanson, George – International Journal of Assessment Tools in Education, 2021
This Monte Carlo study assessed Type I error in differential item functioning analyses using Lord's chi-square (LC), Likelihood Ratio Test (LRT), and Mantel-Haenszel (MH) procedure. Two research interests were investigated: item response theory (IRT) model specification in LC and the LRT and continuity correction in the MH procedure. This study…
Descriptors: Test Bias, Item Response Theory, Statistical Analysis, Comparative Analysis
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Grantee Submission, 2022
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Kyle; Kelcey, Benjamin – Journal of Experimental Education, 2019
We derive sample-allocation formulas that maximize the power of several mediation tests in two-level-group-randomized studies under a linear cost structure and fixed budget. The results suggest that the optimal individual sample size is typically smaller than that associated with the detection of a main effect and is frequently less than 10 under…
Descriptors: Sample Size, Statistical Analysis, Costs, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
No, Unkyung; Hong, Sehee – Educational and Psychological Measurement, 2018
The purpose of the present study is to compare performances of mixture modeling approaches (i.e., one-step approach, three-step maximum-likelihood approach, three-step BCH approach, and LTB approach) based on diverse sample size conditions. To carry out this research, two simulation studies were conducted with two different models, a latent class…
Descriptors: Sample Size, Classification, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Yavuz, Guler; Hambleton, Ronald K. – Educational and Psychological Measurement, 2017
Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…
Descriptors: Item Response Theory, Models, Comparative Analysis, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
What Works Clearinghouse, 2020
The What Works Clearinghouse (WWC) is an initiative of the U.S. Department of Education's Institute of Education Sciences (IES), which was established under the Education Sciences Reform Act of 2002. It is an important part of IES's strategy to use rigorous and relevant research, evaluation, and statistics to improve the nation's education system.…
Descriptors: Educational Research, Evaluation Methods, Evidence, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2016
Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…
Descriptors: Reliability, Computation, Statistical Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Muth, Chelsea; Bales, Karen L.; Hinde, Katie; Maninger, Nicole; Mendoza, Sally P.; Ferrer, Emilio – Educational and Psychological Measurement, 2016
Unavoidable sample size issues beset psychological research that involves scarce populations or costly laboratory procedures. When incorporating longitudinal designs these samples are further reduced by traditional modeling techniques, which perform listwise deletion for any instance of missing data. Moreover, these techniques are limited in their…
Descriptors: Sample Size, Psychological Studies, Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Albano, Anthony D. – Journal of Educational Measurement, 2015
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
Descriptors: Equated Scores, Sample Size, Sampling, Statistical Inference
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4