Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 6 |
| Since 2017 (last 10 years) | 25 |
| Since 2007 (last 20 years) | 81 |
Descriptor
| Comparative Analysis | 134 |
| Monte Carlo Methods | 134 |
| Regression (Statistics) | 43 |
| Maximum Likelihood Statistics | 39 |
| Computation | 36 |
| Item Response Theory | 35 |
| Statistical Analysis | 34 |
| Error of Measurement | 32 |
| Bayesian Statistics | 30 |
| Sample Size | 30 |
| Models | 29 |
| More ▼ | |
Source
Author
| Finch, W. Holmes | 4 |
| Keselman, H. J. | 4 |
| Harring, Jeffrey R. | 3 |
| Algina, James | 2 |
| French, Brian F. | 2 |
| Huang, Francis L. | 2 |
| Jiao, Hong | 2 |
| Jin, Ying | 2 |
| Koziol, Natalie A. | 2 |
| Li, Ming | 2 |
| López-López, José Antonio | 2 |
| More ▼ | |
Publication Type
| Journal Articles | 110 |
| Reports - Research | 82 |
| Reports - Evaluative | 43 |
| Speeches/Meeting Papers | 14 |
| Dissertations/Theses -… | 6 |
| Information Analyses | 1 |
| Opinion Papers | 1 |
Education Level
| Elementary Education | 5 |
| Secondary Education | 5 |
| Grade 4 | 4 |
| Middle Schools | 4 |
| High Schools | 3 |
| Intermediate Grades | 3 |
| Junior High Schools | 3 |
| Grade 8 | 2 |
| Higher Education | 2 |
| Postsecondary Education | 2 |
| Primary Education | 2 |
| More ▼ | |
Audience
| Researchers | 2 |
Location
| Austria | 3 |
| Australia | 2 |
| Belgium | 2 |
| China (Shanghai) | 2 |
| Slovakia | 2 |
| South Korea | 2 |
| United Kingdom (England) | 2 |
| Armenia | 1 |
| Cambodia | 1 |
| Canada | 1 |
| Cyprus | 1 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
| Program for International… | 3 |
| National Assessment of… | 2 |
| Trends in International… | 2 |
| Early Childhood Environment… | 1 |
| Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Eray Selçuk; Ergül Demir – International Journal of Assessment Tools in Education, 2024
This research aims to compare the ability and item parameter estimations of Item Response Theory according to Maximum likelihood and Bayesian approaches in different Monte Carlo simulation conditions. For this purpose, depending on the changes in the priori distribution type, sample size, test length, and logistics model, the ability and item…
Descriptors: Item Response Theory, Item Analysis, Test Items, Simulation
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Curtin, François – Research Synthesis Methods, 2017
Meta-analysis can necessitate the combination of parallel and cross-over trial designs. Because of the differences in the trial designs and potential biases notably associated with the crossover trials, one often combines trials of the same designs only, which decreases the power of the meta-analysis. To combine results of clinical trials from…
Descriptors: Meta Analysis, Monte Carlo Methods, Least Squares Statistics, Medical Research
Pavel Chernyavskiy; Traci S. Kutaka; Carson Keeter; Julie Sarama; Douglas Clements – Grantee Submission, 2025
When researchers code behavior that is undetectable or falls outside of the validated ordinal scale, the resultant outcomes often suffer from informative missingness. Incorrect analysis of such data can lead to biased arguments around efficacy and effectiveness in the context of experimental and intervention research. Here, we detail a new…
Descriptors: Bayesian Statistics, Mathematics Instruction, Learning Trajectories, Item Response Theory
Kirkup, Les; Frenkel, Bob – Physics Education, 2020
When the relationship between two physical variables, such as voltage and current, can be expressed as y = bx where b is a constant. b may be estimated by least squares, or by averaging the values of b obtained for each x-y data pair. We show for data gathered in an experiment, as well as through Monte Carlo simulation and mathematical analysis,…
Descriptors: Comparative Analysis, Least Squares Statistics, Monte Carlo Methods, Physics
Koziol, Natalie A.; Bovaird, James A. – Educational and Psychological Measurement, 2018
Evaluations of measurement invariance provide essential construct validity evidence--a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or…
Descriptors: Computation, Tests, Error of Measurement, Comparative Analysis
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Koziol, Natalie A. – Applied Measurement in Education, 2016
Testlets, or groups of related items, are commonly included in educational assessments due to their many logistical and conceptual advantages. Despite their advantages, testlets introduce complications into the theory and practice of educational measurement. Responses to items within a testlet tend to be correlated even after controlling for…
Descriptors: Classification, Accuracy, Comparative Analysis, Models
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Jin, Ying; Eason, Hershel – Journal of Educational Issues, 2016
The effects of mean ability difference (MAD) and short tests on the performance of various DIF methods have been studied extensively in previous simulation studies. Their effects, however, have not been studied under multilevel data structure. MAD was frequently observed in large-scale cross-country comparison studies where the primary sampling…
Descriptors: Test Bias, Simulation, Hierarchical Linear Modeling, Comparative Analysis

Peer reviewed
Direct link
