Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 7 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Bayesian Statistics | 11 |
| Comparative Analysis | 11 |
| Measurement | 11 |
| Item Response Theory | 5 |
| Simulation | 5 |
| Models | 4 |
| Computation | 3 |
| Computer Software | 3 |
| Correlation | 3 |
| Foreign Countries | 3 |
| Markov Processes | 3 |
| More ▼ | |
Source
Author
| Shi, Ning-Zhong | 2 |
| Tao, Jian | 2 |
| Wang, Chun | 2 |
| Zhang, Xue | 2 |
| Andrade, Alejandro | 1 |
| Carson Keeter | 1 |
| Chu, Haitao | 1 |
| Claassen, Christopher | 1 |
| Danish, Joshua A. | 1 |
| Douglas Clements | 1 |
| Jeon, Minjeong | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Research | 7 |
| Dissertations/Theses -… | 2 |
| Reports - Descriptive | 1 |
| Reports - Evaluative | 1 |
Education Level
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Grade 3 | 1 |
| Kindergarten | 1 |
| Primary Education | 1 |
Audience
Location
| China | 1 |
| South Korea | 1 |
| United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Thompson, Yutian T.; Song, Hairong; Shi, Dexin; Liu, Zhengkui – Educational and Psychological Measurement, 2021
Conventional approaches for selecting a reference indicator (RI) could lead to misleading results in testing for measurement invariance (MI). Several newer quantitative methods have been available for more rigorous RI selection. However, it is still unknown how well these methods perform in terms of correctly identifying a truly invariant item to…
Descriptors: Measurement, Statistical Analysis, Selection, Comparative Analysis
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Pavel Chernyavskiy; Traci S. Kutaka; Carson Keeter; Julie Sarama; Douglas Clements – Grantee Submission, 2024
When researchers code behavior that is undetectable or falls outside of the validated ordinal scale, the resultant outcomes often suffer from informative missingness. Incorrect analysis of such data can lead to biased arguments around efficacy and effectiveness in the context of experimental and intervention research. Here, we detail a new…
Descriptors: Bayesian Statistics, Mathematics Instruction, Learning Trajectories, Item Response Theory
Claassen, Christopher; Traunmüller, Richard – Sociological Methods & Research, 2020
Religious group size, demographic composition, and the dynamics thereof are of interest in many areas of social science including migration, social cohesion, parties and voting, and violent conflict. Existing estimates however are of varying and perhaps poor quality because many countries do not collect official data on religious identity. We…
Descriptors: Religious Cultural Groups, Muslims, Jews, Census Figures
Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V. – Journal of Learning Analytics, 2017
Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…
Descriptors: Measurement, Interaction, Models, Educational Environment
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Analysis, Computation
Wandler, Damian V. – ProQuest LLC, 2010
Generalized fiducial inference is a powerful tool for many difficult problems. Based on an extension of R. A. Fisher's work, we used generalized fiducial inference for two extreme value problems and a multiple comparison procedure. The first extreme value problem is dealing with the generalized Pareto distribution. The generalized Pareto…
Descriptors: Comparative Analysis, Probability, Inferences, Simulation
Jeon, Minjeong – ProQuest LLC, 2012
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Maximum Likelihood Statistics
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods

Peer reviewed
Direct link
