Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 14 |
Descriptor
| Bayesian Statistics | 19 |
| Comparative Analysis | 19 |
| Difficulty Level | 19 |
| Test Items | 9 |
| Item Response Theory | 8 |
| Computation | 6 |
| Accuracy | 5 |
| Models | 5 |
| Monte Carlo Methods | 5 |
| Classification | 4 |
| Maximum Likelihood Statistics | 4 |
| More ▼ | |
Source
Author
| Kim, Sooyeon | 2 |
| Moses, Tim | 2 |
| Ames, Allison | 1 |
| Beck, Joseph E. | 1 |
| Choi, In-Hee | 1 |
| De Boeck, Paul | 1 |
| Desmet, Piet | 1 |
| Dharani, B. | 1 |
| Frederickx, Sofie | 1 |
| Geetha, T. V. | 1 |
| Hartmann, Stefan | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 15 |
| Reports - Research | 14 |
| Reports - Descriptive | 2 |
| Reports - Evaluative | 2 |
| Speeches/Meeting Papers | 2 |
| Dissertations/Theses -… | 1 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 3 |
| Secondary Education | 1 |
Audience
Location
| Germany (Berlin) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Graduate Record Examinations | 1 |
| Michigan Test of English… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Ames, Allison; Smith, Elizabeth – Journal of Educational Measurement, 2018
Bayesian methods incorporate model parameter information prior to data collection. Eliciting information from content experts is an option, but has seen little implementation in Bayesian item response theory (IRT) modeling. This study aims to use ethical reasoning content experts to elicit prior information and incorporate this information into…
Descriptors: Item Response Theory, Bayesian Statistics, Ethics, Specialists
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook – Journal of Educational Measurement, 2015
This inquiry is an investigation of item response theory (IRT) proficiency estimators' accuracy under multistage testing (MST). We chose a two-stage MST design that includes four modules (one at Stage 1, three at Stage 2) and three difficulty paths (low, middle, high). We assembled various two-stage MST panels (i.e., forms) by manipulating two…
Descriptors: Comparative Analysis, Item Response Theory, Computation, Accuracy
Choi, In-Hee; Wilson, Mark – Educational and Psychological Measurement, 2015
An essential feature of the linear logistic test model (LLTM) is that item difficulties are explained using item design properties. By taking advantage of this explanatory aspect of the LLTM, in a mixture extension of the LLTM, the meaning of latent classes is specified by how item properties affect item difficulties within each class. To improve…
Descriptors: Classification, Test Items, Difficulty Level, Statistical Analysis
Premlatha, K. R.; Dharani, B.; Geetha, T. V. – Interactive Learning Environments, 2016
E-learning allows learners individually to learn "anywhere, anytime" and offers immediate access to specific information. However, learners have different behaviors, learning styles, attitudes, and aptitudes, which affect their learning process, and therefore learning environments need to adapt according to these differences, so as to…
Descriptors: Electronic Learning, Profiles, Automation, Classification
Ross, Steven J.; Mackey, Beth – Language Learning, 2015
This chapter introduces three applications of Bayesian inference to common and novel issues in second language research. After a review of the critiques of conventional hypothesis testing, our focus centers on ways Bayesian inference can be used for dealing with missing data, for testing theory-driven substantive hypotheses without a default null…
Descriptors: Bayesian Statistics, Hypothesis Testing, Meta Analysis, Inferences
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry – ETS Research Report Series, 2015
The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…
Descriptors: Item Response Theory, Computation, Statistical Bias, Error of Measurement
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Koziol, Natalie A. – Applied Measurement in Education, 2016
Testlets, or groups of related items, are commonly included in educational assessments due to their many logistical and conceptual advantages. Despite their advantages, testlets introduce complications into the theory and practice of educational measurement. Responses to items within a testlet tend to be correlated even after controlling for…
Descriptors: Classification, Accuracy, Comparative Analysis, Models
Stiller, Jurik; Hartmann, Stefan; Mathesius, Sabrina; Straube, Philipp; Tiemann, Rüdiger; Nordmeier, Volkhard; Krüger, Dirk; Upmeier zu Belzen, Annette – Assessment & Evaluation in Higher Education, 2016
The aim of this study was to improve the criterion-related test score interpretation of a text-based assessment of scientific reasoning competencies in higher education by evaluating factors which systematically affect item difficulty. To provide evidence about the specific demands which test items of various difficulty make on pre-service…
Descriptors: Logical Thinking, Scientific Concepts, Difficulty Level, Test Items
Wauters, Kelly; Desmet, Piet; Van Den Noortgate, Wim – Computers & Education, 2012
The evolution from static to dynamic electronic learning environments has stimulated the research on adaptive item sequencing. A prerequisite for adaptive item sequencing, in which the difficulty of the item is constantly matched to the ability level of the learner, is to have items with a known difficulty level. The difficulty level can be…
Descriptors: Expertise, Electronic Learning, Feedback (Response), Sample Size
Frederickx, Sofie; Tuerlinckx, Francis; De Boeck, Paul; Magis, David – Journal of Educational Measurement, 2010
In this paper we present a new methodology for detecting differential item functioning (DIF). We introduce a DIF model, called the random item mixture (RIM), that is based on a Rasch model with random item difficulties (besides the common random person abilities). In addition, a mixture model is assumed for the item difficulties such that the…
Descriptors: Test Bias, Models, Test Items, Difficulty Level
Kim, Hyun Seok John – ProQuest LLC, 2011
Cognitive diagnostic assessment (CDA) is a new theoretical framework for psychological and educational testing that is designed to provide detailed information about examinees' strengths and weaknesses in specific knowledge structures and processing skills. During the last three decades, more than a dozen psychometric models have been developed…
Descriptors: Cognitive Measurement, Diagnostic Tests, Bayesian Statistics, Statistical Inference
Peer reviewedRamsay, James O. – Psychometrika, 1989
An alternative to the Rasch model is introduced. It characterizes strength of response according to the ratio of ability and difficulty parameters rather than their difference. Joint estimation and marginal estimation models are applied to two test data sets. (SLD)
Descriptors: Ability, Bayesian Statistics, College Entrance Examinations, Comparative Analysis
Previous Page | Next Page »
Pages: 1 | 2
Direct link
