NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 331 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Alex C. Garn; Andreas Stenling – Educational Psychology, 2024
This study investigated daily motivation regulation as a multilevel mediator of undergraduate students' intrinsic and extrinsic motivation and academic functioning. Undergraduate students (N = 124) completed measures on motivation, motivation regulation, and study time for 10 consecutive days leading up to a statistics exam. Bayesian multilevel…
Descriptors: Student Motivation, Prediction, Academic Achievement, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Lu Qin; Shishun Zhao; Wenlai Guo; Tiejun Tong; Ke Yang – Research Synthesis Methods, 2024
The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be…
Descriptors: Meta Analysis, Network Analysis, Bayesian Statistics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Hyung Rock; Sung, Jaeyun; Lee, Sunbok – International Journal of Assessment Tools in Education, 2021
Conventional estimators for indirect effects using a difference in coefficients and product of coefficients produce the same results for continuous outcomes. However, for binary outcomes, the difference in coefficient estimator systematically underestimates the indirect effects because of a scaling problem. One solution is to standardize…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This study aims to estimate the latent interaction effect in the CLPM model through a two-step multiple imputation analysis. The estimation of within x within and between x within latent interaction under the CLPM model framework is compared between the one-step Bayesian LMS method and the two-step multiple imputation analysis through a simulation…
Descriptors: Guidelines, Bayesian Statistics, Self Esteem, Depression (Psychology)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eser, Mehmet Taha – International Online Journal of Education and Teaching, 2021
This study aims to compare the results of the factor analysis performed with Frequentist and Bayesian approaches. The number of sub-dimensions of the measurement tool obtained from different methods, the variation of the items in the sub-dimensions, and the fit statistics' differentiation were examined. 778 students constitute the study sample.…
Descriptors: Factor Analysis, Bayesian Statistics, Measurement Techniques, Goodness of Fit
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  23