NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)9
Source
Multivariate Behavioral…30
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
de Rooij, Mark; Schouteden, Martijn – Multivariate Behavioral Research, 2012
Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…
Descriptors: Statistical Analysis, Longitudinal Studies, Data, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Estabrook, Ryne; Neale, Michael – Multivariate Behavioral Research, 2013
Factor score estimation is a controversial topic in psychometrics, and the estimation of factor scores from exploratory factor models has historically received a great deal of attention. However, both confirmatory factor models and the existence of missing data have generally been ignored in this debate. This article presents a simulation study…
Descriptors: Factor Analysis, Scores, Computation, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Brosseau-Liard, Patricia E.; Savalei, Victoria; Li, Libo – Multivariate Behavioral Research, 2012
The root mean square error of approximation (RMSEA) is a popular fit index in structural equation modeling (SEM). Typically, RMSEA is computed using the normal theory maximum likelihood (ML) fit function. Under nonnormality, the uncorrected sample estimate of the ML RMSEA tends to be inflated. Two robust corrections to the sample ML RMSEA have…
Descriptors: Structural Equation Models, Goodness of Fit, Maximum Likelihood Statistics, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xin; Zhang, Zhiyong – Multivariate Behavioral Research, 2012
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
Descriptors: Models, Robustness (Statistics), Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Multivariate Behavioral Research, 2009
This study linked nonlinear profile analysis (NPA) of dichotomous responses with an existing family of item response theory models and generalized latent variable models (GLVM). The NPA method offers several benefits over previous internal profile analysis methods: (a) NPA is estimated with maximum likelihood in a GLVM framework rather than…
Descriptors: Profiles, Item Response Theory, Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Cook, Thomas D.; Steiner, Peter M.; Pohl, Steffi – Multivariate Behavioral Research, 2009
This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the…
Descriptors: Statistical Bias, Reliability, Data Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Brown, R. L. – Multivariate Behavioral Research, 1990
A Monte Carlo study was conducted to assess the robustness of the limited information two-stage least squares (2SLS) estimation procedure on a confirmatory factor analysis model with nonnormal distributions. Full information maximum likelihood methods were used for comparison. One hundred model replications were used to generate data. (TJH)
Descriptors: Comparative Analysis, Estimation (Mathematics), Factor Analysis, Least Squares Statistics
Peer reviewed Peer reviewed
Bacon, Donald R. – Multivariate Behavioral Research, 1995
A maximum likelihood approach to correlational outlier identification is introduced and compared to the Mahalanobis D squared and Comrey D statistics through Monte Carlo simulation. Identification performance depends on the nature of correlational outliers and the measure used, but the maximum likelihood approach is the most robust performance…
Descriptors: Comparative Analysis, Computer Simulation, Correlation, Estimation (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Lix, Lisa M.; Algina, James; Keselman, H. J. – Multivariate Behavioral Research, 2003
The approximate degrees of freedom Welch-James (WJ) and Brown-Forsythe (BF) procedures for testing within-subjects effects in multivariate groups by trials repeated measures designs were investigated under departures from covariance homogeneity and normality. Empirical Type I error and power rates were obtained for least-squares estimators and…
Descriptors: Interaction, Freedom, Sample Size, Multivariate Analysis
Peer reviewed Peer reviewed
Keselman, H. J.; Algina, James; Kowalchuk, Rhonda K. – Multivariate Behavioral Research, 2002
Reviews methods for analyzing repeated measures data in addition to the conventional and corrected degrees of freedom univariate and multivariate solutions. Reviews the literature regarding recent procedures with respect to robustness, ability to handle missing data, and availability of software to obtain numerical results. (SLD)
Descriptors: Comparative Analysis, Computer Software, Data Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Kreft, Ita G. G.; And Others – Multivariate Behavioral Research, 1995
The effects of two different methods of centering, in comparison with the use of raw scores, on the parameter estimates of random coefficient models were studied. Analyses show that centering around the group mean amounts to fitting a different model than centering around the grand mean or using raw scores. (SLD)
Descriptors: Comparative Analysis, Estimation (Mathematics), Raw Scores, Regression (Statistics)
Peer reviewed Peer reviewed
Keeling, Kellie B. – Multivariate Behavioral Research, 2000
Developed a new regression equation to estimate the mean value of eigenvalues in parallel analysis and studied the performance of the equation in comparison with previously published regression equations through simulation. Performance of the new equation was comparable to that of the LCHF equation of G. Lautenschlager and others (1989). (SLD)
Descriptors: Comparative Analysis, Equations (Mathematics), Estimation (Mathematics), Regression (Statistics)
Previous Page | Next Page ยป
Pages: 1  |  2