NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
HaeJin Lee; Nigel Bosch – International Journal of STEM Education, 2024
Self-regulated learning (SRL) strategies can be domain specific. However, it remains unclear whether this specificity extends to different subtopics within a single subject domain. In this study, we collected data from 210 college students engaged in a computer-based learning environment to examine the heterogeneous manifestations of learning…
Descriptors: Computer Assisted Instruction, Self Management, Intellectual Disciplines, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kai Li – International Association for Development of the Information Society, 2023
Assessing students' performance in online learning could be executed not only by the traditional forms of summative assessments such as using essays, assignments, and a final exam, etc. but also by more formative assessment approaches such as interaction activities, forum posts, etc. However, it is difficult for teachers to monitor and assess…
Descriptors: Student Evaluation, Online Courses, Electronic Learning, Computer Literacy
Bronson Nichols – ProQuest LLC, 2021
Access to the Internet has increased connectivity between people across large distances. It has also amplified the desire of college students to engage in the illegal sharing and distribution of data. The purpose of this quantitative research study was to analyze the behaviors that motivate Michigan college students to engage in digital piracy.…
Descriptors: College Students, Intellectual Property, Copyrights, Information Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chinsook, Kittipong; Khajonmote, Withamon; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jantakoon, Thada – Higher Education Studies, 2022
Big data is an important part of innovation that has recently attracted a lot of interest from academics and practitioners alike. Given the importance of the education industry, there is a growing trend to investigate the role of big data in this field. Much research has been undertaken to date in order to better understand the use of big data in…
Descriptors: Student Behavior, Learning Analytics, Computer Software, Rating Scales
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ninasivincha-Apfata, Jhon Edwar; Quispe-Figueroa, Ricardo Carlos; Valderrama-Solis, Manuel Alejandro; Maraza-Quispe, Benjamin – World Journal on Educational Technology: Current Issues, 2021
The objective of the research is to develop a methodology to analyse a set of data extracted from a learning management system, in order to implement a dashboard, which can be used by teachers to make timely and relevant decisions to improve the teaching-learning processes. The methodology used consisted of analysing 9,257 records extracted…
Descriptors: Learning Analytics, Integrated Learning Systems, Visual Aids, Technology Uses in Education
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Anna Y. Q.; Lu, Owen H. T.; Huang, Jeff C. H.; Yin, C. J.; Yang, Stephen J. H. – Interactive Learning Environments, 2020
In order to enhance the experience of learning, many educators applied learning analytics in a classroom, the major principle of learning analytics is targeting at-risk student and given timely intervention according to the results of student behavior analysis. However, when researchers applied machine learning to train a risk identifying model,…
Descriptors: Academic Achievement, Data Use, Learning Analytics, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jill Lawrence; Alice Brown; Petrea Redmond; Marita Basson – Student Success, 2019
Universities increasingly implement online delivery to strengthen students' access and flexibility. However, they often do so with limited understanding of the impact of online pedagogy on student engagement. To explore these issues, a research project was conducted investigating the use of course-specific learning analytics to 'nudge' students…
Descriptors: Learner Engagement, Learning Analytics, Data Use, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Naujokaitiene, Justina; Tamoliune, Giedre; Volungeviciene, Airina; Duart, Josep M. – Journal of New Approaches in Educational Research, 2020
Student engagement is one of the most relevant topics within the academic and research community nowadays. Higher education curriculum, teaching and learning integrate new technology- supported learning solutions. New methods and tools enhance teacher and learner interactions and influence learner engagement positively. This research addresses the…
Descriptors: Learning Analytics, Learner Engagement, Instructional Improvement, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Orchard, Ryan K. – Journal of Educational Technology Systems, 2019
Learning management systems (LMS) allow for a variety of ways in which online multiple-choice assessments ("tests") can be configured, including the ability to allow for multiple attempts and options for which of and how the attempts will count. These options are usually chosen according to the instinct of the instructor; however, LMS…
Descriptors: Integrated Learning Systems, Data Use, Electronic Learning, Assignments
Peer reviewed Peer reviewed
Direct linkDirect link
Mozahem, Najib Ali – International Journal of Mobile and Blended Learning, 2020
Higher education institutes are increasingly turning their attention to web-based learning management systems. The purpose of this study is to investigate whether data collected from LMS can be used to predict student performance in classrooms that use LMS to supplement face-to-face teaching. Data was collected from eight courses spread across two…
Descriptors: Integrated Learning Systems, Data Use, Prediction, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use