NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 203 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yibei Yin – International Journal of Web-Based Learning and Teaching Technologies, 2023
In order to study the big data of college students' employment, this paper takes the big data of college students' employment as the premise, analyzes the current employment data by establishing a DBN model, and puts forward relevant management measures, aiming to provide scientific basis for the management of graduates' employment data. The…
Descriptors: College Students, Student Employment, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Nazanin Nezami; Parian Haghighat; Denisa Gándara; Hadis Anahideh – Grantee Submission, 2024
The education sector has been quick to recognize the power of predictive analytics to enhance student success rates. However, there are challenges to widespread adoption, including the lack of accessibility and the potential perpetuation of inequalities. These challenges present in different stages of modeling, including data preparation, model…
Descriptors: Evaluation Methods, College Students, Success, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Seungwon Chung; Carl F. Falk – Journal of Educational Measurement, 2024
In this study, we introduced a cross-classified multidimensional nominal response model (CC-MNRM) to account for various response styles (RS) in the presence of cross-classified data. The proposed model allows slopes to vary across items and can explore impacts of observed covariates on latent constructs. We applied a recently developed variant of…
Descriptors: Response Style (Tests), Classification, Data, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Perez-Vergara, Kelly – Strategic Enrollment Management Quarterly, 2020
Institutional staff such as enrollment managers, business officers, and institutional researchers are often asked to predict enrollments. Developing any predictive model can be intimidating, particularly when there is no textbook to follow. This paper provides a practical framework for generating enrollment projection options and for evaluating…
Descriptors: Enrollment Projections, Enrollment Management, Enrollment Trends, Models
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Leif Sundberg; Jonny Holmström – Journal of Information Systems Education, 2024
With recent advances in artificial intelligence (AI), machine learning (ML) has been identified as particularly useful for organizations seeking to create value from data. However, as ML is commonly associated with technical professions, such as computer science and engineering, incorporating training in the use of ML into non-technical…
Descriptors: Artificial Intelligence, Conventional Instruction, Data Collection, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Yanhui Wang – International Journal of Web-Based Learning and Teaching Technologies, 2024
In recent years, China has accelerated the process of internationalization and made more and more achievements in transnational communication and cooperation. English learning is very important for contemporary college students. And English reading is an important means to acquire English language knowledge, understand external information and…
Descriptors: Algorithms, College Students, English (Second Language), Reading Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Xiaoming; Ge, Shilun; Wang, Nianxin – International Journal of Information and Communication Technology Education, 2022
In the context of education big data, it uses data mining and learning analysis technology to accurately predict and effectively intervene in learning. It is helpful to realize individualized teaching and individualized teaching. This research analyzes student life behavior data and learning behavior data. A model of student behavior…
Descriptors: Prediction, Data, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Samaranayake, Sobitha; Gunawardena, Athula D. A.; Meyer, Robert R. – Athens Journal of Education, 2023
Many students in the Unites States enter college without having decided on a focus for their studies, and thus are faced with choosing from a large number of potential majors and associated very complex sets of degree requirements which can include many courses in other areas of study. Academic advisors use academic planning tools to help students…
Descriptors: College Students, Degree Requirements, Academic Degrees, Decision Support Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
J. Bryan Osborne; Andrew S. I. D. Lang – Journal of Postsecondary Student Success, 2023
This paper describes a neural network model that can be used to detect at- risk students failing a particular course using only grade book data from a learning management system. By analyzing data extracted from the learning management system at the end of week 5, the model can predict with an accuracy of 88% whether the student will pass or fail…
Descriptors: Identification, At Risk Students, Learning Management Systems, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Xingle Ji; Lu Sun; Xueyong Xu; Xiaobing Lei – International Journal of Information and Communication Technology Education, 2024
This study examines the current research on educational data mining, educational learning support services, personalized learning services, and personalized learning paths in education. The authors aim to integrate personalized learning concepts into traditional support services by drawing on the latest theoretical and practical research. Using…
Descriptors: Information Retrieval, Data Analysis, Educational Research, Individualized Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Gontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Wilson, Joseph; Pollard, Benjamin; Aiken, John M.; Lewandowski, H. J. – Physical Review Physics Education Research, 2022
Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights…
Descriptors: Natural Language Processing, Science Education, Physics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Gkontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze, and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  14