NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Cleophas, Catherine; Hönnige, Christoph; Meisel, Frank; Meyer, Philipp – INFORMS Transactions on Education, 2023
As the COVID-19 pandemic motivated a shift to virtual teaching, exams have increasingly moved online too. Detecting cheating through collusion is not easy when tech-savvy students take online exams at home and on their own devices. Such online at-home exams may tempt students to collude and share materials and answers. However, online exams'…
Descriptors: Computer Assisted Testing, Cheating, Identification, Essay Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Patterson, Chris R.; York, Emily; Maxham, Danielle; Molina, Rudy; Mabrey, Paul, III – Journal of Learning Analytics, 2023
The anticipation, inclusion, responsiveness, and reflexivity (AIRR) framework (Stilgoe et al., 2013) is a novel framework that has helped those in science and technology fields shift their focus from products to the processes used to create those products. However, the framework has not been known to be applied to the development and…
Descriptors: Learning Analytics, Innovation, School Holding Power, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Yürüm, Ozan Rasit; Taskaya-Temizel, Tugba; Yildirim, Soner – Education and Information Technologies, 2023
Video clickstream behaviors such as pause, forward, and backward offer great potential for educational data mining and learning analytics since students exhibit a significant amount of these behaviors in online courses. The purpose of this study is to investigate the predictive relationship between video clickstream behaviors and students' test…
Descriptors: Video Technology, Educational Technology, Learning Management Systems, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Jaramillo-Morillo, Daniel; Ruipérez-Valiente, José; Sarasty, Mario F.; Ramírez-Gonzalez, Gustavo – International Journal of Educational Technology in Higher Education, 2020
Massive Open Online Massive Open Online Courses (MOOCs) have been transitioning slowly from being completely open and without clear recognition in universities or industry, to private settings through the emergence of Small and Massive Private Online Courses (SPOCs and MPOCs). Courses in these new formats are often for credit and have clear market…
Descriptors: Foreign Countries, Online Courses, Cheating, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Jongile, Sonwabo – International Journal on E-Learning, 2022
The identification of predictor variables for students at-risk of dropping out of university has received increased attention in higher education settings internationally concerning the context of origin in which they are developed and the different academic context in which they are introduced, often lacking schema-theoretic perspectives to offer…
Descriptors: Predictor Variables, At Risk Students, Potential Dropouts, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Trezise, Kelly; Ryan, Tracii; de Barba, Paula; Kennedy, Gregor – Journal of Learning Analytics, 2019
Rural teachers and educators are increasingly called upon to build partnerships with families who use languages other than English in the home (US DOE, 2016). This is equally true for rural schools, where the number of multilingual families is small, and the language and cultural backgrounds of students differs from those of school. This article…
Descriptors: College Students, Cheating, Identification, Learning Analytics
Acosta, Alejandra – New America, 2020
Predictive analytics has taken higher education by storm, with its promise of closing equity gaps, raising student retention rates, and increasing tuition revenue by keeping students enrolled. Many colleges and universities have made an investment in predictive analytics for student success initiatives, and even more are looking into implementing,…
Descriptors: Prediction, Learning Analytics, Higher Education, Information Dissemination
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Anna Y. Q.; Lu, Owen H. T.; Huang, Jeff C. H.; Yin, C. J.; Yang, Stephen J. H. – Interactive Learning Environments, 2020
In order to enhance the experience of learning, many educators applied learning analytics in a classroom, the major principle of learning analytics is targeting at-risk student and given timely intervention according to the results of student behavior analysis. However, when researchers applied machine learning to train a risk identifying model,…
Descriptors: Academic Achievement, Data Use, Learning Analytics, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Georgakopoulos, Ioannis; Chalikias, Miltiadis; Zakopoulos, Vassilis; Kossieri, Evangelia – Education Sciences, 2020
Our modern era has brought about radical changes in the way courses are delivered and various teaching methods are being introduced to answer the purpose of meeting the modern learning challenges. On that account, the conventional way of teaching is giving place to a teaching method which combines conventional instructional strategies with…
Descriptors: Academic Failure, Blended Learning, Learner Engagement, Student Participation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Herodotou, Christothea; Rienties, Bart; Verdin, Barry; Boroowa, Avinash – Journal of Learning Analytics, 2019
Predictive Learning Analytics (PLA) aim to improve learning by identifying students at risk of failing their studies. Yet, little is known about how best to integrate and scaffold PLA initiatives into higher education institutions. Towards this end, it becomes essential to capture and analyze the perceptions of relevant educational stakeholders…
Descriptors: Prediction, Data Analysis, Higher Education, Distance Education