NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Xiaoke – International Journal of Web-Based Learning and Teaching Technologies, 2023
With the vigorous development of intelligent campus construction, great changes have taken place in the development of information technology in colleges and universities from the previous digital to intelligent development. In the teaching process, the analysis of students' classroom learning has also changed from the previous manual observation…
Descriptors: College Students, Algorithms, Student Behavior, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jingjing Long; Jiaxin Lin – Education and Information Technologies, 2024
English language learning students in China often feel challenged to learn English due to lack of motivation and confidence, pronunciation and grammar difference, lack of practice and people to communicate with etc., which affects students mental health. Adopting Big data and AI will help in overcoming these limitations as it provides personalized…
Descriptors: Foreign Countries, English Language Learners, College Students, Mental Health
Peer reviewed Peer reviewed
Direct linkDirect link
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Yibei Yin – International Journal of Web-Based Learning and Teaching Technologies, 2023
In order to study the big data of college students' employment, this paper takes the big data of college students' employment as the premise, analyzes the current employment data by establishing a DBN model, and puts forward relevant management measures, aiming to provide scientific basis for the management of graduates' employment data. The…
Descriptors: College Students, Student Employment, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Juliana Elisa Raffaghelli; Marc Romero Carbonell; Teresa Romeu-Fontanillas – Information and Learning Sciences, 2024
Purpose: It has been demonstrated that AI-powered, data-driven tools' usage is not universal, but deeply linked to socio-cultural contexts. The purpose of this paper is to display the need of adopting situated lenses, relating to specific personal and professional learning about data protection and privacy. Design/methodology/approach: The authors…
Descriptors: Artificial Intelligence, Data Collection, Information Literacy, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Dake, Delali Kwasi; Gyimah, Esther – Education and Information Technologies, 2023
Text analytics in education has evolved to form a critical component of the future SMART campus architecture. Sentiment analysis and qualitative feedback from students is now a crucial application domain of text analytics relevant to institutions. The implementation of sentiment analysis helps understand learners' appreciation of lessons, which…
Descriptors: Feedback (Response), College Students, Psychological Patterns, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Cannistrà, Marta; Masci, Chiara; Ieva, Francesca; Agasisti, Tommaso; Paganoni, Anna Maria – Studies in Higher Education, 2022
This paper combines a theoretical-based model with a data-driven approach to develop an Early Warning System that detects students who are more likely to dropout. The model uses innovative multilevel statistical and machine learning methods. The paper demonstrates the validity of the approach by applying it to administrative data from a leading…
Descriptors: Dropouts, Potential Dropouts, Dropout Prevention, Dropout Characteristics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Frank Stinar; Zihan Xiong; Nigel Bosch – Journal of Educational Data Mining, 2024
Educational data mining has allowed for large improvements in educational outcomes and understanding of educational processes. However, there remains a constant tension between educational data mining advances and protecting student privacy while using educational datasets. Publicly available datasets have facilitated numerous research projects…
Descriptors: Foreign Countries, College Students, Secondary School Students, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Muhammad Alhammami – Discover Education, 2024
This paper outlines the development of a Hardware Development Kit (HDK) for a remote training platform on FPGA Devices designed to provide university students pursuing degrees in electronic and informatics engineering (at the bachelor's, master's, and PhD levels) with the tools they need to learn and develop systems related to artificial…
Descriptors: Computer System Design, Distance Education, College Students, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Allie Michael; Abdullah O. Akinde – Assessment Update, 2024
Open-ended responses to surveys can be highly beneficial to higher education institutions, providing clarity and context that quantitative data can sometimes lack. However, analyzing open-ended responses typically takes time and manpower most institutional assessment offices do not have to spare. This study focused on finding a potential solution…
Descriptors: Artificial Intelligence, Natural Language Processing, Student Surveys, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khamisi Kalegele – International Journal of Education and Development using Information and Communication Technology, 2023
Pragmatically, machine learning techniques can improve educators' capacity to monitor students' learning progress when applied to quality data. For developing countries, the major obstacle has been the unavailability of quality data that fits the purpose. This is partly because the in-use information systems are either not properly managed or not…
Descriptors: Artificial Intelligence, Learning Management Systems, Progress Monitoring, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Leif Sundberg; Jonny Holmström – Journal of Information Systems Education, 2024
With recent advances in artificial intelligence (AI), machine learning (ML) has been identified as particularly useful for organizations seeking to create value from data. However, as ML is commonly associated with technical professions, such as computer science and engineering, incorporating training in the use of ML into non-technical…
Descriptors: Artificial Intelligence, Conventional Instruction, Data Collection, Models
Randhir Rawatlal; Rubby Dhunpath – Association for Institutional Research, 2023
Although student advising is known to improve student success, its application is often inadequate in institutions that are resource constrained. Given recent advances in large language models (LLMs) such as Chat Generative Pre-trained Transformer (ChatGPT), automated approaches such as the AutoScholar Advisor system affords viable alternatives to…
Descriptors: Academic Advising, Technology Uses in Education, Artificial Intelligence, Progress Monitoring
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4