NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Zhao, Qun; Wang, Jin-Long; Pao, Tsang-Long; Wang, Li-Yu – Journal of Educational Technology Systems, 2020
This study uses the log data from Moodle learning management system for predicting student learning performance in the first third of a semester. Since the quality of the data has great influence on the accuracy of machine learning, five major data transmission methods are used to enhance data quality of log file in the data preprocessing stage.…
Descriptors: Classification, Learning, Accuracy, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ian Thacker; Hannah French; Shon Feder – International Journal of Science Education, 2025
Presenting novel numbers about climate change to people after they estimate those numbers can shift their attitudes and scientific conceptions. Prior research suggests that such science learning can be supported by encouraging learners to make use of given benchmark information, however there are several other numerical estimation skills that may…
Descriptors: Climate, Computation, College Students, Hispanic American Students