Publication Date
| In 2026 | 0 |
| Since 2025 | 25 |
| Since 2022 (last 5 years) | 66 |
| Since 2017 (last 10 years) | 66 |
| Since 2007 (last 20 years) | 66 |
Descriptor
Source
Author
| Andy Nguyen | 2 |
| Anouschka van Leeuwen | 2 |
| Jina Kang | 2 |
| Lars de Vreugd | 2 |
| Marieke van der Schaaf | 2 |
| Mohammad Khalil | 2 |
| Abdulkadir Palanci | 1 |
| Abdulla Al-Ali | 1 |
| Afnan Al-ali | 1 |
| Ahmed Al-Emadi | 1 |
| Akwasi Adomako Boakye | 1 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 66 |
| Postsecondary Education | 66 |
| High Schools | 1 |
| Secondary Education | 1 |
Audience
| Teachers | 2 |
Location
| China | 8 |
| Australia | 3 |
| Netherlands | 3 |
| Finland | 2 |
| India | 2 |
| Africa | 1 |
| Belgium | 1 |
| Chile | 1 |
| China (Shanghai) | 1 |
| Ghana | 1 |
| Indonesia | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 1 |
What Works Clearinghouse Rating
Nedime Selin Çöpgeven; Mehmet Firat – Journal of Educators Online, 2024
Learning processes can now be transferred to digital environments, allowing for the tracking of learners' digital footprints. The field of learning analytics focuses on the efficient use of these digital records to improve both learning experiences and processes. Dashboards are the tangible outputs of learning analytics. The use of dashboards in…
Descriptors: Electronic Learning, Distance Education, Academic Achievement, Educational Technology
Nina Bergdahl; Melissa Bond; Jeanette Sjöberg; Mark Dougherty; Emily Oxley – International Journal of Educational Technology in Higher Education, 2024
Educational outcomes are heavily reliant on student engagement, yet this concept is complex and subject to diverse interpretations. The intricacy of the issue arises from the broad spectrum of interpretations, each contributing to the understanding of student engagement as both complex and multifaceted. Given the emergence and increasing use of…
Descriptors: Learner Engagement, College Students, Student Behavior, Educational Technology
Peer reviewedMegan N. Imundo; Siyuan Li; Jiachen Gong; Andrew Potter; Tracy Arner; Danielle S. McNamara – Grantee Submission, 2025
Personalized learning (PL) is a student-centered instructional approach in which learning goals, pacing, content, and environments are customized to address individual student needs (Bernacki et al., 2021; Ellis, 2009; Lee, 2014; Miliband, 2006; Office of Educational Technology, 2010; Sota, 2016; Zhang et al., 2020). In grades K-12, PL has been…
Descriptors: Self Determination, Individualized Instruction, Electronic Learning, Higher Education
Flora Ji-Yoon Jin; Bhagya Maheshi; Wenhua Lai; Yuheng Li; Danijela Gasevic; Guanliang Chen; Nicola Charwat; Philip Wing Keung Chan; Roberto Martinez-Maldonado; Dragan Gaševic; Yi-Shan Tsai – Journal of Learning Analytics, 2025
This paper explores the integration of generative AI (GenAI) in the feedback process in higher education through a learning analytics (LA) tool, examined from a feedback literacy perspective. Feedback literacy refers to students' ability to understand, evaluate, and apply feedback effectively to improve their learning, which is crucial for…
Descriptors: College Students, Student Attitudes, Artificial Intelligence, Learning Analytics
Christothea Herodotou; Sagun Shrestha; Catherine Comfort; Heshan Andrews; Paul Mulholland; Vaclav Bayer; Claire Maguire; John Lee; Miriam Fernandez – Journal of Learning Analytics, 2025
In this paper, we explore the design of a student-facing dashboard for online and distance learning with a focus on capturing and addressing specific learning needs. A participatory process involving 20 students was employed, which included a screening questionnaire and focus group discussions. The selection of data points to be displayed on the…
Descriptors: Electronic Learning, Distance Education, Student Attitudes, Educational Technology
Nicole F. Tennessen; Lauren N. Irwin – New Directions for Teaching and Learning, 2025
This chapter uses critical perspectives on whiteness to critique higher education's institutional research practice. After briefly describing institutional research, we summarize scholarship about autonomy, ethics, and predictive analytics to illustrate how existing guidance and beliefs about institutional research often dehumanize students by…
Descriptors: Whites, Racism, Higher Education, Educational Research
Lucas Paulsen; Euan Lindsay – Education and Information Technologies, 2024
This systematic review explores the emerging themes in the design and implementation of student-facing learning analytics dashboards in higher education. Learning Analytics has long been criticised for focusing too much on the analytics, and not enough on the learning. The review is then guided by an interest in whether these dashboards are still…
Descriptors: Learning Analytics, Educational Technology, Learning Processes, College Students
Anca Muresan; Mihaela Cardei; Ionut Cardei – International Educational Data Mining Society, 2025
Early identification of student success is crucial for enabling timely interventions, reducing dropout rates, and promoting on-time graduation. In educational settings, AI-powered systems have become essential for predicting student performance due to their advanced analytical capabilities. However, effectively leveraging diverse student data to…
Descriptors: Artificial Intelligence, At Risk Students, Learning Analytics, Technology Uses in Education
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Saleh Alhazbi; Afnan Al-ali; Aliya Tabassum; Abdulla Al-Ali; Ahmed Al-Emadi; Tamer Khattab; Mahmood A. Hasan – Journal of Computer Assisted Learning, 2024
Background: Measuring students' self-regulation skills is essential to understand how they approach their learning tasks in order to identify areas where they might need additional support. Traditionally, self-report questionnaires and think aloud protocols have been used to measure self-regulated learning skills (SRL). However, these methods are…
Descriptors: Learning Analytics, Independent Study, Higher Education, College Students
Lili Aunimo; Janne Kauttonen; Marko Vahtola; Salla Huttunen – Journal of Computing in Higher Education, 2025
Institutions of higher education possess large amounts of learning-related data in their student registers and learning management systems (LMS). This data can be mined to gain insights into study paths, study styles and possible bottlenecks on the study paths. In this study, we focused on creating a predictive model for study completion time…
Descriptors: Data Collection, Learning Management Systems, Study Habits, Time on Task
Anuradha Peramunugamage; Uditha W. Ratnayake; Shironica P. Karunanayaka; Ellen Francine Barbosa; William Simão de Deus; Chulantha L. Jayawardena; R. K. J. de Silva – Journal of Learning for Development, 2025
Interactions among students in online learning environments are difficult to monitor but can be crucial for their academic performance. Moodle is one of the best and most popular online learning platforms, where its log records can reveal important information on students' engagement and the respective performance. This study examines the degree…
Descriptors: Cooperative Learning, Interaction, Electronic Learning, Learning Management Systems
Logan Sizemore; Brian Hutchinson; Emily Borda – Chemistry Education Research and Practice, 2024
Education researchers are deeply interested in understanding the way students organize their knowledge. Card sort tasks, which require students to group concepts, are one mechanism to infer a student's organizational strategy. However, the limited resolution of card sort tasks means they necessarily miss some of the nuance in a student's strategy.…
Descriptors: Artificial Intelligence, Chemistry, Cognitive Ability, Abstract Reasoning
Esteban Villalobos; Isabel Hilliger; Carlos Gonzalez; Sergio Celis; Mar Pérez-Sanagustín; Julien Broisin – Journal of Learning Analytics, 2024
Researchers in learning analytics have created indicators with learners' trace data as a proxy for studying learner behaviour in a college course. Student Approaches to Learning (SAL) is one of the theories used to explain these behaviours, distinguishing between deep, surface, and organized study. In Latin America, researchers have demonstrated…
Descriptors: Learning Analytics, Academic Achievement, Role Theory, Learning Processes
Lars de Vreugd; Anouschka van Leeuwen; Marieke van der Schaaf – Journal of Computer Assisted Learning, 2025
Background: University students need to self-regulate but are sometimes incapable of doing so. Learning Analytics Dashboards (LADs) can support students' appraisal of study behaviour, from which goals can be set and performed. However, it is unclear how goal-setting and self-motivation within self-regulated learning elicits behaviour when using an…
Descriptors: Learning Analytics, Educational Technology, Goal Orientation, Learning Motivation

Direct link
