NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 41 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ha, Hyejin; Jang, Taehun; Sohn, Sang Ho; Kim, Junghwa – Physics Teacher, 2022
A solenoid is a coil wound many times on a cylinder of length greater than its diameter. Solenoids are mainly used as electromagnets, because a magnetic field is formed when current flows through a solenoid. The solenoid described in secondary school and university textbooks is a single-layered solenoid. Further, textbooks and papers focusing on…
Descriptors: Magnets, Secondary School Science, College Science, Textbooks
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Si; Huang, Shiqi; Liu, Chenchen; Tang, Ziqian; Shi, Qingfan; Schulte, Jurgen – Physics Teacher, 2021
The directional feature of Earth's geomagnetic field has been contributing to the technological development and prosperity of humankind since the invention of the magnetic compass navigation centuries ago. Today, for instance, magnetoresistance sensors are commonly used in nanosatellites and unmanned aerial vehicles for high accuracy geomagnetic…
Descriptors: Measurement Techniques, Magnets, Accuracy, Geophysics
Annie Regan; John O'Donoghue; Carl Poree; Peter W. Dunne – Journal of Chemical Education, 2023
Materials science research has expanded significantly in recent years; a multidisciplinary field, home to an ever-growing number of chemists. However, our general chemistry degree courses have not changed to reflect the rise in interest in this topic. In this paper, we propose a laboratory experiment for the undergraduate chemistry practical…
Descriptors: Science Instruction, Science Experiments, Magnets, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Sudripet Sharma; Tharique N. Ansari; Karanjeet Kaur; Andrea Gorce; Wilfried M. Braje; Sachin Handa – Journal of Chemical Education, 2023
Chemistry in water is an emerging field that fulfills the fifth principle of green chemistry: replacing toxic organic solvents with their benign counterparts. Although some pharmaceutical industries have developed and adopted chemistry in water, its implementation in teaching laboratories is still limited. Therefore, we have designed an experiment…
Descriptors: Water, Undergraduate Students, Undergraduate Study, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Forringer, Edward Russell – Physics Teacher, 2022
In a 1993 book review, E. Pearlstein asks, "Why don't textbook authors begin their discussion of magnetism by talking about magnets? That's what students have experience with." A similar question can be asked, "Why don't professors have students measure the force between permanent magnets in introductory physics labs?" The…
Descriptors: Science Education, Physics, Magnets, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ashkarran, Ali Akbar; Mahmoudi, Morteza – Physics Education, 2021
Here, we propose the use of magnetic levitation (MagLev) device, as a simple, cheap, and portable experimental technique to measure the density of diamagnetic materials in laboratory settings. We highlight the basics of a standard MagLev system for measuring the density of unknown diamagnetic materials/objects using permanent magnets, paramagnetic…
Descriptors: Magnets, Science Experiments, Measurement Techniques, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Elliott, Leslie Atkins; Sippola, Elizabeth; Watkins, Jeffrey – Journal of Chemical Education, 2019
In this article, we describe how the Gaussian Gun, a simple configuration of magnets and ball bearings, can be leveraged to connect ideas from physics to representations and ideas that are central to chemistry and challenging for students to learn. In particular, we show how the Gaussian Gun, an arrangement of ball bearings and magnets, models…
Descriptors: Science Instruction, Chemistry, Physics, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Ishafit, I.; Indratno, T. K.; Prabowo, Y. D. – Physics Education, 2020
The topic of electric and magnetic fields is fundamental to the physics curriculum in both high school and college. The applied aspect of this topic has triggered the rapid development of modern technology in this era. This paper reported a remote data acquisition system developed for experiments with magnetic fields by coils to support…
Descriptors: Science Instruction, Magnets, Scientific Concepts, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Natoli, Sean N.; McMillin, David R. – Journal of Chemical Education, 2018
Students collect magnetic susceptibility data to verify that Hund's rule correctly predicts electronic configurations. Systems examined include three commercially available lanthanide(III)-containing complexes of the form M(acac)[subscript 3](H[subscript 2]O)[subscript 2] (where M = La(III), Nd(III), and Gd(III), and acac denotes the [CH[subscript…
Descriptors: Science Instruction, Magnets, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Anjos, R. M.; Amaral, S. S. G.; Muniz, M. C.; Cardoso, R. P.; Bernardo, T. A. S.; Guerrieri, A.; Lage, L. L. – Physics Education, 2020
Harmful plastic debris found on beaches and in the oceans are not limited to drinking straws or bags. There are several synthetic organic polymers that can be used to make different kinds of plastic materials and have resulted in billions of tons of waste that can reach the aquatic biome and are harmful to freshwater and marine communities as well…
Descriptors: Spectroscopy, Teaching Methods, Science Instruction, Plastics
Peer reviewed Peer reviewed
Direct linkDirect link
Dalverny, Anne-Laure; Leyral, Géraldine; Rouessac, Florence; Bernaud, Laurent; Filhol, Jean-Sébastien – Journal of Chemical Education, 2018
Magnetic iron oxide nanoparticles were synthesized and stabilized using ammonium cations or poly(vinyl alcohol) to produce amazing materials such as safer aqueous ferrofluids, ferrogels, ferromagnetic inks, plastics, and nanopowders illustrating how versatile materials can be produced just by simple modifications. The synthesis is fast, reliable,…
Descriptors: Science Instruction, Chemistry, Magnets, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Sharma, R. K.; Yadav, Subham; Gupta, Radhika; Arora, Gunjan – Journal of Chemical Education, 2019
Systems thinking is highly desirable for re-imagining chemistry education, which will help in the development of an integrated and sustainable approach that takes into account the interdependence of a system under study with other components of the ecosystem rather than practicing a fragmented approach. Thus, to develop a systems' perspective into…
Descriptors: Science Instruction, Science Experiments, Sustainability, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David – Physics Education, 2018
The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an…
Descriptors: Secondary School Science, Science Instruction, High Schools, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Furlan, Ping Y.; Fisher, Adam J.; Melcer, Michael E.; Furlan, Alexander Y.; Warren, John B. – Journal of Chemical Education, 2017
We describe a 2 h introductory laboratory procedure that prepares a novel magnetic antimicrobial activated carbon nanocomposite in which nanoscale sized magnetite and silver particles are incorporated (MACAg). The MACAg nanocomposite has achieved the synergistic properties derived from its components and demonstrated its applicability as an…
Descriptors: Science Laboratories, College Science, Secondary School Science, High Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Claycomb, James R.; Valentine, John H. – Physics Education, 2015
A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…
Descriptors: Science Instruction, Physics, Science Laboratories, Scientific Principles
Previous Page | Next Page »
Pages: 1  |  2  |  3