NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Frost, Stephanie J. H.; Yik, Brandon J.; Dood, Amber J.; Cruz-Ramírez de Arellano, Daniel; Fields, Kimberly B.; Raker, Jeffrey R. – Chemistry Education Research and Practice, 2023
A deep understanding of organic chemistry requires a learner to understand many concepts and have fluency with multiple skills. This understanding is particularly necessary for constructing and using mechanisms to explain chemical reactions. Electrophilicity and nucleophilicity are two fundamental concepts to learning and understanding reaction…
Descriptors: Science Instruction, Organic Chemistry, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Crandell, Olivia M.; Pazicni, Samuel – Chemistry Education Research and Practice, 2023
This study investigates students' cognitive resources for identifying symmetry elements using survey data collected from 39 inorganic chemistry students from twelve undergraduate inorganic classes at universities across the United States. We propose a framework that leverages students' knowledge of symmetry elements as a manifold of cognitive…
Descriptors: Science Process Skills, Cognitive Processes, Scientific Concepts, Inorganic Chemistry
Wood, Sarah A. – ProQuest LLC, 2021
Chemistry students often struggle in organic chemistry courses. In fact, these courses are viewed by some as "weed-out" classes. There are many fundamental concepts covered in general chemistry that contribute to students' ability to succeed in organic chemistry. One of those fundamental topics, and the focus of this study, is the topic…
Descriptors: Organic Chemistry, Science Instruction, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Reina, Antonio; Garci´a-Ortega, Héctor; Gracia-Mora, Jesús; Mari´n-Becerra, Armando; Reina, Miguel – Journal of Chemical Education, 2022
Educational games have demonstrated that they represent valuable pedagogical instruments, which can contribute to teaching and learning in a gratifying environment. In particular in chemistry courses, an important effort has been made to facilitate complex interrelated concepts in an easy, enjoyable, and sometimes competitive way. "Compounds…
Descriptors: Educational Games, Molecular Structure, Scientific Concepts, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Minshall, Brianna L.; Yezierski, Ellen J. – Chemistry Education Research and Practice, 2021
For six semesters, activities have been incorporated into first year general chemistry courses in an effort to build student conceptual chemistry knowledge. The activities follow a learning cycle pedagogy (similar to Process Oriented Guided Inquiry Learning or POGIL activities) and consist of guiding questions involving animations, models,…
Descriptors: Science Instruction, Chemistry, Knowledge Level, Inquiry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Uyulgan, Melis Arzu; Akkuzu, Nalan – Acta Didactica Napocensia, 2016
The subject of molecular structures is one of the most important and complex subject in chemistry which a majority of the undergraduate students have difficulties to understand its concepts and characteristics correctly. To comprehend the molecular structures and their characteristics the students need to understand related subjects such as Lewis…
Descriptors: Concept Formation, Molecular Structure, Chemistry, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Teichert, Melonie A.; Tien, Lydia T.; Dysleski, Lisa; Rickey, Dawn – Journal of Chemical Education, 2017
This study investigated relationships between the thinking processes that 28 undergraduate chemistry students engaged in during guided discovery and their subsequent success at reasoning through a transfer problem during an end-of-semester interview. During a guided-discovery laboratory module, students were prompted to use words, pictures, and…
Descriptors: Science Instruction, College Science, Undergraduate Study, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Selvarajah, Geeta; Selvarajah, Susila – Biochemistry and Molecular Biology Education, 2016
Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…
Descriptors: Genetics, Molecular Structure, Scientific Concepts, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Terrell, Cassidy R.; Listenberger, Laura L. – Biochemistry and Molecular Biology Education, 2017
Recognizing that undergraduate students can benefit from analysis of 3D protein structure and function, we have developed a multiweek, inquiry-based molecular visualization project for Biochemistry I students. This project uses a virtual model of cyclooxygenase-1 (COX-1) to guide students through multiple levels of protein structure analysis. The…
Descriptors: Undergraduate Students, College Science, Biochemistry, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bledsoe, Karen E. – Electronic Journal of Science Education, 2013
Though student understanding of the nature of matter has been studied extensively, little is known about student knowledge of the biological molecules. This study examined understanding of proteins, carbohydrates, and lipids in 25 undergraduate students in order to document logical structures within student alternative concepts. Student knowledge…
Descriptors: Science Education, College Science, Undergraduate Students, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D. – CBE - Life Sciences Education, 2017
The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of…
Descriptors: Biology, Science Education, Scientific Concepts, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam – Journal of Chemical Education, 2015
Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…
Descriptors: Majors (Students), College Science, Science Instruction, Interviews
Peer reviewed Peer reviewed
Direct linkDirect link
Burrmann, Nicola J.; Moore, John W. – Journal of Chemical Education, 2015
The implementation of a web-based stereochemistry tutorial, which allows students to select their preferred structural representation and method for making stereochemical comparisons between molecules, is discussed. The tutorial was evaluated by students in three different introductory organic chemistry courses at a large midwestern university.…
Descriptors: Science Instruction, Web Based Instruction, Chemistry, Molecular Structure
Warfa, Abdi-Rizak M. – ProQuest LLC, 2013
Using the symbolic interactionist perspective that meaning is constituted as individuals interact with one another, this study examined how group thinking during cooperative inquiry-based activity on chemical bonding theories shaped and influenced college students' understanding of the properties of ionic compounds in solution. The analysis…
Descriptors: Inquiry, Chemistry, College Students, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Flener-Lovitt, Charity – Journal of Chemical Education, 2014
A thematic course called "Climate Change: Chemistry and Controversy" was developed for upper-level non-STEM students. This course used the socioscientific context of climate change to teach chemical principles and the nature of science. Students used principles of agnotology (direct study of misinformation) to debunk climate change…
Descriptors: Science Instruction, College Science, Undergraduate Study, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2