Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 4 |
Descriptor
Author
| A. I. Makinde | 1 |
| B. A. Ojokoh | 1 |
| Ballera, Melvin A. | 1 |
| Dharani, B. | 1 |
| E. O. Ibam | 1 |
| Geetha, T. V. | 1 |
| M. S. Omirin | 1 |
| Maaliw, Renato R. III | 1 |
| O. C. Agbonifo | 1 |
| O. K. Boyinbode | 1 |
| O. Olabode | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 4 |
| Journal Articles | 3 |
| Speeches/Meeting Papers | 1 |
Education Level
| Higher Education | 4 |
| Postsecondary Education | 3 |
Audience
Location
| Philippines | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences
Obeng, Asare Yaw – Cogent Education, 2023
The learning processes have been significantly impacted by technology. Numerous learners have adopted technology-based learning systems as the preferred form of learning. It is then necessary to identify the learning styles of learners to deliver appropriate resources, engage them, increase their motivation, and enhance their satisfaction and…
Descriptors: Predictor Variables, Cognitive Style, Electronic Learning, College Freshmen
Premlatha, K. R.; Dharani, B.; Geetha, T. V. – Interactive Learning Environments, 2016
E-learning allows learners individually to learn "anywhere, anytime" and offers immediate access to specific information. However, learners have different behaviors, learning styles, attitudes, and aptitudes, which affect their learning process, and therefore learning environments need to adapt according to these differences, so as to…
Descriptors: Electronic Learning, Profiles, Automation, Classification
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making

Peer reviewed
Direct link
