NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Winkel, Brian – International Journal of Mathematical Education in Science and Technology, 2012
We consider an oblique approach to cutting regions out of a flat rectangular sheet and folding to make a maximum volume container. We compare our approach to the traditional approach of cutting out squares at each vertex of the sheet. (Contains 4 figures.)
Descriptors: Calculus, Mathematics, Mathematics Instruction, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
de Alwis, Amal – International Journal of Mathematical Education in Science and Technology, 2012
The article begins with a well-known property regarding tangent lines to a cubic polynomial that has distinct, real zeros. We were then able to generalize this property to any polynomial with distinct, real zeros. We also considered a certain family of cubics with two fixed zeros and one variable zero, and explored the loci of centroids of…
Descriptors: Arithmetic, Algebra, Mathematical Formulas, Geometric Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Awtrey, Chad – PRIMUS, 2013
This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…
Descriptors: Mathematics Instruction, College Mathematics, Undergraduate Students, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zhao, Dongsheng – International Journal of Mathematical Education in Science and Technology, 2011
An outbox of a quadrilateral is a rectangle such that each vertex of the given quadrilateral lies on one side of the rectangle and different vertices lie on different sides. We first investigate those quadrilaterals whose every outbox is a square. Next, we consider the maximal outboxes of rectangles and those quadrilaterals with perpendicular…
Descriptors: Geometric Concepts, Calculus, Mathematics Instruction, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Gordon, Sheldon P. – Mathematics Teacher, 2011
For almost all students, what happens when they push buttons on their calculators is essentially magic, and the techniques used are seemingly pure wizardry. In this article, the author draws back the curtain to expose some of the mathematics behind computational wizardry and introduces some fundamental ideas that are accessible to precalculus…
Descriptors: Data Analysis, Geometric Concepts, Trigonometry, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Vajiac, A.; Vajiac, B. – International Journal of Mathematical Education in Science and Technology, 2008
We present a concise, yet self-contained module for teaching the notion of area and the Fundamental Theorem of Calculus for different groups of students. This module contains two different levels of rigour, depending on the class it used for. It also incorporates a technological component. (Contains 6 figures.)
Descriptors: Calculus, Mathematics Instruction, Mathematical Concepts, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Hoensch, Ulrich A. – College Mathematics Journal, 2009
We explore how curvature and torsion determine the shape of a curve via the Frenet-Serret formulas. The connection is made explicit using the existence of solutions to ordinary differential equations. We use a paperclip as a concrete, visual example and generate its graph in 3-space using a CAS. We also show how certain physical deformations to…
Descriptors: Equations (Mathematics), Calculus, Geometric Concepts, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Fletcher, Rodney – Australian Senior Mathematics Journal, 2007
There has been a lot of material written about logarithmic spirals of golden proportion but this author states that he has never come across an article that states the exact equation of the spiral which ultimately spirals tangentially to the sides of the rectangles. In this article, the author intends to develop such an equation. (Contains 5…
Descriptors: Mathematics, Mathematical Concepts, Equations (Mathematics), Numbers
Peer reviewed Peer reviewed
Direct linkDirect link
Ding, Jiu; Ye, Ningjun – International Journal of Mathematical Education in Science & Technology, 2006
This paper considers the problem of approximating an integrable function by piecewise linear functions that keep the integral and positivity of the original function.
Descriptors: Calculus, Validity, Equations (Mathematics), Geometric Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2004
The topic of orthogonal trajectories is taught as a geometric application of first order differential equations. Instructors usually elaborate on the concept of a family of curves to emphasize that they are different even if their members are of the same type. In this article the author considers five families of ellipses, discusses their…
Descriptors: Equations (Mathematics), Student Projects, Geometric Concepts, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Guasti, M. Fernandez – International Journal of Mathematical Education in Science and Technology, 2005
Three major techniques are employed to calculate [pi]. Namely, (i) the perimeter of polygons inscribed or circumscribed in a circle, (ii) calculus based methods using integral representations of inverse trigonometric functions, and (iii) modular identities derived from the transformation theory of elliptic integrals. This note presents a…
Descriptors: Trigonometry, Calculus, Computation, Geometric Concepts
Coscia, Donald R. – MATYC Journal, 1974
Descriptors: Calculus, College Mathematics, Geometric Concepts, Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Alongi, John M. – PRIMUS, 2005
We provide a geometric proof of the formula for the sine of the sum of two positive angles whose measures sum to less than [pi]/2. (Contains 1 figure.)
Descriptors: Geometric Concepts, Calculus, Mathematics Instruction, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
McGivney, Ray; McKim, Jim – AMATYC Review, 2006
Interesting problems sometimes have surprising sources. In this paper we take an innocent looking problem from a calculus book and rediscover the radical axis of classical geometry. For intersecting circles the radical axis is the line through the two points of intersection. For nonintersecting, nonconcentric circles, the radical axis still…
Descriptors: Geometry, Calculus, Mathematics Instruction, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Zelator, Konstantine – Mathematics and Computer Education, 2005
This paper is written on a level accessible to college/university students of mathematics who are taking second-year, algebra based, mathematics courses beyond calculus I. This article combines material from geometry, trigonometry, and number theory. This integration of various techniques is an excellent experience for the serious student. The…
Descriptors: Geometric Concepts, Numbers, Number Concepts, Calculus
Previous Page | Next Page ยป
Pages: 1  |  2