Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 13 |
| Since 2017 (last 10 years) | 40 |
| Since 2007 (last 20 years) | 94 |
Descriptor
Source
Author
| Mislevy, Robert J. | 8 |
| Gelman, Andrew | 4 |
| Gifford, Janice A. | 4 |
| Swaminathan, Hariharan | 4 |
| Chung, Yeojin | 3 |
| Dorie, Vincent | 3 |
| Kim, Seock-Ho | 3 |
| Lee, Sik-Yum | 3 |
| Rabe-Hesketh, Sophia | 3 |
| Raudenbush, Stephen W. | 3 |
| Reckase, Mark D. | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 6 |
| Practitioners | 1 |
| Students | 1 |
| Teachers | 1 |
Location
| United Kingdom (England) | 3 |
| Iran | 2 |
| Armenia | 1 |
| Austria | 1 |
| Belgium | 1 |
| California | 1 |
| Europe | 1 |
| Florida | 1 |
| Norway | 1 |
| South Korea | 1 |
| Tunisia | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wyse, Adam E. – Educational Measurement: Issues and Practice, 2017
This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…
Descriptors: Cutting Scores, Item Response Theory, Bayesian Statistics, Maximum Likelihood Statistics
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Faucon, Louis; Kidzinski, Lukasz; Dillenbourg, Pierre – International Educational Data Mining Society, 2016
Large-scale experiments are often expensive and time consuming. Although Massive Online Open Courses (MOOCs) provide a solid and consistent framework for learning analytics, MOOC practitioners are still reluctant to risk resources in experiments. In this study, we suggest a methodology for simulating MOOC students, which allow estimation of…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Online Courses
De Bondt, Niki; Van Petegem, Peter – High Ability Studies, 2017
The aim of this study is to investigate interrelationships between overexcitability and learning patterns from the perspective of personality development according to Dabrowski's theory of positive disintegration. To this end, Bayesian structural equation modeling (BSEM) is applied which allows for the simultaneous inclusion in the measurement…
Descriptors: Psychological Patterns, Structural Equation Models, Bayesian Statistics, College Students
Lee, Taehun; Cai, Li; Kuhfeld, Megan – Grantee Submission, 2016
Posterior Predictive Model Checking (PPMC) is a Bayesian model checking method that compares the observed data to (plausible) future observations from the posterior predictive distribution. We propose an alternative to PPMC in the context of structural equation modeling, which we term the Poor Persons PPMC (PP-PPMC), for the situation wherein one…
Descriptors: Structural Equation Models, Bayesian Statistics, Prediction, Monte Carlo Methods
Lee, Woo-yeol; Cho, Sun-Joo – Journal of Educational Measurement, 2017
Cross-level invariance in a multilevel item response model can be investigated by testing whether the within-level item discriminations are equal to the between-level item discriminations. Testing the cross-level invariance assumption is important to understand constructs in multilevel data. However, in most multilevel item response model…
Descriptors: Test Items, Item Response Theory, Item Analysis, Simulation
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Dawson, Christi L.; Hennessey, Maeghan N.; Higley, Kelli – International Journal of Higher Education, 2016
This study investigated the perceptions of epistemic justification of students in two disparate domains of study to determine if any similarities and differences in their methods of justification exist. Two samples of students, or a total of 513 undergraduates from educational psychology (n = 193) and biology (n = 320) courses, completed a…
Descriptors: Student Attitudes, Biology, Teaching Methods, Educational Psychology
Pfaffel, Andreas; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
Approaches to correcting correlation coefficients for range restriction have been developed under the framework of large sample theory. The accuracy of missing data techniques for correcting correlation coefficients for range restriction has thus far only been investigated with relatively large samples. However, researchers and evaluators are…
Descriptors: Correlation, Sample Size, Error of Measurement, Accuracy
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin – Journal of Research on Educational Effectiveness, 2017
The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…
Descriptors: Evaluation Research, Program Evaluation, Welfare Services, Employment
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment

Peer reviewed
Direct link
