Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 32 |
| Since 2017 (last 10 years) | 93 |
| Since 2007 (last 20 years) | 179 |
Descriptor
| Bayesian Statistics | 224 |
| Monte Carlo Methods | 224 |
| Markov Processes | 124 |
| Models | 91 |
| Item Response Theory | 81 |
| Computation | 66 |
| Simulation | 45 |
| Maximum Likelihood Statistics | 40 |
| Statistical Analysis | 35 |
| Statistical Inference | 34 |
| Test Items | 33 |
| More ▼ | |
Source
Author
| Levy, Roy | 5 |
| Lijuan Wang | 5 |
| Mislevy, Robert J. | 5 |
| Fox, Jean-Paul | 4 |
| Glas, Cees A. W. | 4 |
| Jiao, Hong | 4 |
| Johnson, Matthew S. | 4 |
| Zhang, Zhiyong | 4 |
| de la Torre, Jimmy | 4 |
| Chang, Hua-Hua | 3 |
| Culpepper, Steven Andrew | 3 |
| More ▼ | |
Publication Type
| Journal Articles | 168 |
| Reports - Research | 140 |
| Reports - Evaluative | 39 |
| Reports - Descriptive | 31 |
| Speeches/Meeting Papers | 14 |
| Dissertations/Theses -… | 10 |
| Information Analyses | 4 |
| Opinion Papers | 2 |
| Numerical/Quantitative Data | 1 |
Education Level
Audience
| Researchers | 4 |
| Students | 1 |
| Teachers | 1 |
Location
| Germany | 3 |
| Taiwan | 3 |
| Armenia | 1 |
| Australia | 1 |
| Austria | 1 |
| Colombia | 1 |
| Iran | 1 |
| Italy | 1 |
| Missouri | 1 |
| New York | 1 |
| North Carolina | 1 |
| More ▼ | |
Laws, Policies, & Programs
| Aid to Families with… | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Mariano, Louis T.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 2007
When constructed response test items are scored by more than one rater, the repeated ratings allow for the consideration of individual rater bias and variability in estimating student proficiency. Several hierarchical models based on item response theory have been introduced to model such effects. In this article, the authors demonstrate how these…
Descriptors: Test Items, Item Response Theory, Rating Scales, Scoring
Herzog, Walter; Boomsma, Anne; Reinecke, Sven – Structural Equation Modeling: A Multidisciplinary Journal, 2007
According to Kenny and McCoach (2003), chi-square tests of structural equation models produce inflated Type I error rates when the degrees of freedom increase. So far, the amount of this bias in large models has not been quantified. In a Monte Carlo study of confirmatory factor models with a range of 48 to 960 degrees of freedom it was found that…
Descriptors: Monte Carlo Methods, Structural Equation Models, Effect Size, Maximum Likelihood Statistics
Muthen, Bengt – 1994
This paper investigates methods that avoid using multiple groups to represent the missing data patterns in covariance structure modeling, attempting instead to do a single-group analysis where the only action the analyst has to take is to indicate that data is missing. A new covariance structure approach developed by B. Muthen and G. Arminger is…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Fox, Jean-Paul – 2002
A structural multilevel model is presented in which some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal politicos response data serve to measure the latent variables using an item response theory model. The latent variables can be defined at any level of the multilevel…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes
Glas, Cees A. W.; van der Linden, Wim J. – 2001
In some areas of measurement item parameters should not be modeled as fixed but as random. Examples of such areas are: item sampling, computerized item generation, measurement with substantial estimation error in the item parameter estimates, and grouping of items under a common stimulus or in a common context. A hierarchical version of the…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes
Kim, Seock-Ho; Cohen, Allan S. – 1999
The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes
Peer reviewedMaris, Gunter; Maris, Eric – Psychometrika, 2002
Introduces a new technique for estimating the parameters of models with continuous latent data. To streamline presentation of this Markov Chain Monte Carlo (MCMC) method, the Rasch model is used. Also introduces a new sampling-based Bayesian technique, the DA-T-Gibbs sampler. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Markov Processes
Peer reviewedWang, Xiaohui; Bradlow, Eric T.; Wainer, Howard – Applied Psychological Measurement, 2002
Proposes a modified version of commonly employed item response models in a fully Bayesian framework and obtains inferences under the model using Markov chain Monte Carlo techniques. Demonstrates use of the model in a series of simulations and with operational data from the North Carolina Test of Computer Skills and the Test of Spoken English…
Descriptors: Bayesian Statistics, Item Response Theory, Markov Processes, Mathematical Models
Peer reviewedPatz, Richard J.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 1999
Extends the basic Markov chain Monte Carlo (MCMC) strategy of R. Patz and B. Junker (1999) for Bayesian inference in complex Item Response Theory settings to address issues such as nonresponse, designed missingness, multiple raters, guessing behaviors, and partial credit (polytomous) test items. Applies the MCMC method to data from the National…
Descriptors: Bayesian Statistics, Item Response Theory, Markov Processes, Monte Carlo Methods
DeSarbo, Wayne S.; Fong, Duncan K. H.; Liechty, John; Saxton, M. Kim – Psychometrika, 2004
This manuscript introduces a new Bayesian finite mixture methodology for the joint clustering of row and column stimuli/objects associated with two-mode asymmetric proximity, dominance, or profile data. That is, common clusters are derived which partition both the row and column stimuli/objects simultaneously into the same derived set of clusters.…
Descriptors: Bayesian Statistics, Multivariate Analysis, Monte Carlo Methods, Consumer Economics
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
Lee, Sik-Yum; Song, Xin-Yuan – Journal of Educational and Behavioral Statistics, 2005
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
Descriptors: Mathematics, Sampling, Structural Equation Models, Bayesian Statistics
Kim, Seock-Ho; Cohen, Allan S. – 1998
The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Higher Education, Markov Processes
Beguin, Anton A.; Glas, Cees A. W. – 1998
A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization to a model with multidimensional ability parameters are discussed. The procedure is a generalization of a procedure by J. Albert (1992) for estimating the two-parameter normal ogive model. The procedure will support multiple samples from multiple…
Descriptors: Ability, Bayesian Statistics, Estimation (Mathematics), Item Response Theory
Mislevy, Robert J.; Almond, Russell; Dibello, Lou; Jenkins, Frank; Steinberg, Linda; Yan, Duanli; Senturk, Deniz – 2002
An active area in psychometric research is coordinated task design and statistical analysis built around cognitive models. Compared with classical test theory and item response theory, there is often less information from observed data about the measurement-model parameters. On the other hand, there is more information from the grounding…
Descriptors: Bayesian Statistics, Educational Assessment, Item Response Theory, Markov Processes
Levy, Roy; Mislevy, Robert J. – 2003
This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…
Descriptors: Bayesian Statistics, Cognitive Processes, Markov Processes, Mathematical Models

Direct link
