NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal…1
What Works Clearinghouse Rating
Showing 1 to 15 of 41 results Save | Export
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Robert B. Olsen; Larry L. Orr; Stephen H. Bell; Elizabeth Petraglia; Elena Badillo-Goicoechea; Atsushi Miyaoka; Elizabeth A. Stuart – Journal of Research on Educational Effectiveness, 2024
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs…
Descriptors: Accuracy, Predictor Variables, Randomized Controlled Trials, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
CadwalladerOlsker, Todd – Mathematics Teacher, 2019
Students studying statistics often misunderstand what statistics represent. Some of the most well-known misunderstandings of statistics revolve around null hypothesis significance testing. One pervasive misunderstanding is that the calculated p-value represents the probability that the null hypothesis is true, and that if p < 0.05, there is…
Descriptors: Statistics, Mathematics Education, Misconceptions, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Oleson, Jacob J.; Brown, Grant D.; McCreery, Ryan – Journal of Speech, Language, and Hearing Research, 2019
Purpose: Scientists in the speech, language, and hearing sciences rely on statistical analyses to help reveal complex relationships and patterns in the data collected from their research studies. However, data from studies in the fields of communication sciences and disorders rarely conform to the underlying assumptions of many traditional…
Descriptors: Speech Language Pathology, Data Collection, Interpersonal Communication, Communication Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Pek, Jolynn; Van Zandt, Trisha – Psychology Learning and Teaching, 2020
Statistical thinking is essential to understanding the nature of scientific results as a consumer. Statistical thinking also facilitates thinking like a scientist. Instead of emphasizing a "correct" procedure for data analysis and its outcome, statistical thinking focuses on the process of data analysis. This article reviews frequentist…
Descriptors: Bayesian Statistics, Thinking Skills, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Fawcett, Lee – Journal of Statistics Education, 2018
In this article we discuss our attempt to incorporate research-informed learning and teaching activities into a final year undergraduate Statistics course. We make use of the Shiny web-based application framework for R to develop "Shiny apps" designed to help facilitate student interaction with methods from recently published papers in…
Descriptors: Undergraduate Students, Foreign Countries, Statistics, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Fox, Jean-Paul; Marianti, Sukaesi – Journal of Educational Measurement, 2017
Response accuracy and response time data can be analyzed with a joint model to measure ability and speed of working, while accounting for relationships between item and person characteristics. In this study, person-fit statistics are proposed for joint models to detect aberrant response accuracy and/or response time patterns. The person-fit tests…
Descriptors: Accuracy, Reaction Time, Statistics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Gagliardi, Annie; Feldman, Naomi H.; Lidz, Jeffrey – Cognitive Science, 2017
Children acquiring languages with noun classes (grammatical gender) have ample statistical information available that characterizes the distribution of nouns into these classes, but their use of this information to classify novel nouns differs from the predictions made by an optimal Bayesian classifier. We use rational analysis to investigate the…
Descriptors: Children, Statistics, Learning, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Yusuke; Sakamoto, Wataru; Goto, Masashi; Staessen, Jan A.; Wang, Jiguang; Gueyffier, Francois; Riley, Richard D. – Research Synthesis Methods, 2014
When some trials provide individual patient data (IPD) and the others provide only aggregate data (AD), meta-analysis methods for combining IPD and AD are required. We propose a method that reconstructs the missing IPD for AD trials by a Bayesian sampling procedure and then applies an IPD meta-analysis model to the mixture of simulated IPD and…
Descriptors: Meta Analysis, Patients, Bayesian Statistics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Paul, Warren; Cunnington, R. Clare – Statistics Education Research Journal, 2017
We used the Survey of Attitudes Toward Statistics to (1) evaluate using presemester data the Students' Attitudes Toward Statistics Model (SATS-M), and (2) test the effect on attitudes of an introductory statistics course redesigned according to the Guidelines for Assessment and Instruction in Statistics Education (GAISE) by examining the change in…
Descriptors: Foreign Countries, College Students, Student Attitudes, Statistics
Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
A growing body of research suggests that accounting for student specific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a…
Descriptors: Models, Regression (Statistics), Learning, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan – Research Synthesis Methods, 2013
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…
Descriptors: Computation, Statistical Analysis, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Verde, Pablo E.; Ohmann, Christian – Research Synthesis Methods, 2015
Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-analysis, such as generalizing experimental results or increasing the power to detect an effect that a single study is not able to detect. However, while in meta-analysis, the main question may be simple, the structure of evidence available to answer it…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Comparative Analysis, Evidence
Peer reviewed Peer reviewed
Direct linkDirect link
Rossman, Allan; Utts, Jessica – Journal of Statistics Education, 2014
This article offers a transcript of author Allan Rossman's interview with Jessica Utts, Professor and Chair of Statistics at the University of California-Irvine. Utts is also a Fellow of the American Statistical Association and a recipient of a Founders Award from ASA. Additionally, she has been elected as President of ASA for the year 2016. The…
Descriptors: Interviews, Statistics, College Faculty, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Balasooriya, Uditha; Li, Jackie; Low, Chan Kee – Australian Senior Mathematics Journal, 2012
For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the…
Descriptors: Computation, Probability, Mathematics, Mathematics Curriculum
Previous Page | Next Page ยป
Pages: 1  |  2  |  3