NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Elementary and Secondary…1
What Works Clearinghouse Rating
Showing 1 to 15 of 83 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2025
Consider the conventional multilevel model Y=C[gamma]+Zu+e where [gamma] represents fixed effects and (u,e) are multivariate normal random effects. The continuous outcomes Y and covariates C are fully observed with a subset Z of C. The parameters are [theta]=([gamma],var(u),var(e)). Dempster, Rubin and Tsutakawa (1981) framed the estimation as a…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Sampling, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Sperandei, Sandro; Bastos, Leonardo Soares; Ribeiro-Alves, Marcelo; Reis, Arianne; Bastos, Francisco Inácio – International Journal of Social Research Methodology, 2023
The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection…
Descriptors: Regression (Statistics), Recruitment, Sampling, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Combs, Adam – Journal of Educational Measurement, 2023
A common method of checking person-fit in Bayesian item response theory (IRT) is the posterior-predictive (PP) method. In recent years, more powerful approaches have been proposed that are based on resampling methods using the popular L*[subscript z] statistic. There has also been proposed a new Bayesian model checking method based on pivotal…
Descriptors: Bayesian Statistics, Goodness of Fit, Evaluation Methods, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Domínguez Islas, Clara; Rice, Kenneth M. – Research Synthesis Methods, 2022
Bayesian methods seem a natural choice for combining sources of evidence in meta-analyses. However, in practice, their sensitivity to the choice of prior distribution is much less attractive, particularly for parameters describing heterogeneity. A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways to think about…
Descriptors: Bayesian Statistics, Evidence, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Hayes, Brett K.; Liew, Shi Xian; Desai, Saoirse Connor; Navarro, Danielle J.; Wen, Yuhang – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The samples of evidence we use to make inferences in everyday and formal settings are often subject to selection biases. Two property induction experiments examined group and individual sensitivity to one type of selection bias: sampling frames - causal constraints that only allow certain types of instances to be sampled. Group data from both…
Descriptors: Logical Thinking, Inferences, Bias, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Hyung Rock; Sung, Jaeyun; Lee, Sunbok – International Journal of Assessment Tools in Education, 2021
Conventional estimators for indirect effects using a difference in coefficients and product of coefficients produce the same results for continuous outcomes. However, for binary outcomes, the difference in coefficient estimator systematically underestimates the indirect effects because of a scaling problem. One solution is to standardize…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Cui, Zhongmin – Educational Measurement: Issues and Practice, 2021
Commonly used machine learning applications seem to relate to big data. This article provides a gentle review of machine learning and shows why machine learning can be applied to small data too. An example of applying machine learning to screen irregularity reports is presented. In the example, the support vector machine and multinomial naïve…
Descriptors: Artificial Intelligence, Man Machine Systems, Data, Bayesian Statistics
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rodríguez-Ferreiro, Javier; Vadillo, Miguel A.; Barberia, Itxaso – Teaching of Psychology, 2023
Background: We have previously presented two educational interventions aimed to diminish causal illusions and promote critical thinking. In both cases, these interventions reduced causal illusions developed in response to active contingency learning tasks, in which participants were able to decide whether to introduce the potential cause in each…
Descriptors: Sampling, Inferences, Psychology, Undergraduate Students
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6