Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 7 |
Descriptor
| Bayesian Statistics | 9 |
| Monte Carlo Methods | 9 |
| Robustness (Statistics) | 9 |
| Models | 4 |
| Computation | 3 |
| Accuracy | 2 |
| Comparative Analysis | 2 |
| Educational Research | 2 |
| Error of Measurement | 2 |
| Evaluation Methods | 2 |
| Growth Models | 2 |
| More ▼ | |
Source
| ETS Research Report Series | 2 |
| Grantee Submission | 2 |
| Journal of Educational… | 1 |
| Journal of Research on… | 1 |
| Psychometrika | 1 |
| School Psychology Quarterly | 1 |
| Structural Equation Modeling:… | 1 |
Author
| Kristin Valentino | 2 |
| Lijuan Wang | 2 |
| Xiao Liu | 2 |
| Zhiyong Zhang | 2 |
| Almond, Russell G. | 1 |
| Edelsbrunner, Peter A. | 1 |
| Flaig, Maja | 1 |
| Forsberg, Ole J. | 1 |
| Hartz, Sarah | 1 |
| Hemat, Lisa A. | 1 |
| Lee, Sik-Yum | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Research | 8 |
| Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| National Longitudinal Survey… | 1 |
| Peabody Individual… | 1 |
What Works Clearinghouse Rating
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Grantee Submission, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
Maeda, Hotaka; Zhang, Bo – Journal of Educational Measurement, 2020
When a response pattern does not fit a selected measurement model, one may resort to robust ability estimation. Two popular robust methods are biweight and Huber weight. So far, research on these methods has been quite limited. This article proposes the maximum a posteriori biweight (BMAP) and Huber weight (HMAP) estimation methods. These methods…
Descriptors: Bayesian Statistics, Robustness (Statistics), Computation, Monte Carlo Methods
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli – ETS Research Report Series, 2006
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task that may be dependent. This paper explores four design patterns for modeling locally dependent observations from the same task: (1) No context--Ignore dependence among observables; (2) Compensatory…
Descriptors: Bayesian Statistics, Networks, Models, Design
Hartz, Sarah; Roussos, Louis – ETS Research Report Series, 2008
This paper presents the development of the fusion model skills diagnosis system (fusion model system), which can help integrate standardized testing into the learning process with both skills-level examinee parameters for modeling examinee skill mastery and skills-level item parameters, giving information about the diagnostic power of the test.…
Descriptors: Skill Development, Educational Diagnosis, Theory Practice Relationship, Standardized Tests
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2006
By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…
Descriptors: Maximum Likelihood Statistics, Statistical Distributions, Structural Equation Models, Robustness (Statistics)

Peer reviewed
Direct link
