Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 10 |
| Since 2017 (last 10 years) | 33 |
| Since 2007 (last 20 years) | 65 |
Descriptor
| Bayesian Statistics | 71 |
| Measurement | 71 |
| Models | 26 |
| Statistical Analysis | 17 |
| Item Response Theory | 13 |
| Monte Carlo Methods | 13 |
| Computation | 12 |
| Foreign Countries | 12 |
| Probability | 12 |
| Simulation | 12 |
| Comparative Analysis | 11 |
| More ▼ | |
Source
Author
| Kaplan, David | 4 |
| Asparouhov, Tihomir | 2 |
| Chu, Haitao | 2 |
| Depaoli, Sarah | 2 |
| Levy, Roy | 2 |
| Mislevy, Robert J. | 2 |
| Shi, Ning-Zhong | 2 |
| Siegel, Lianne | 2 |
| Tao, Jian | 2 |
| Wang, Chun | 2 |
| Zhang, Xue | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 3 |
| Digit Span Test | 1 |
| National Assessment of… | 1 |
| Teaching and Learning… | 1 |
| Trends in International… | 1 |
| Youth Risk Behavior Survey | 1 |
What Works Clearinghouse Rating
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Kristel Izquierdo – ProQuest LLC, 2021
Knowledge about the interior density distribution of a planetary body can constrain geophysical processes and reveal information about the origin and evolution of the body. Properties of this interior distribution can be inferred by analyzing gravity acceleration data sampled by orbiting satellites. Usually, the gravity data is complemented with…
Descriptors: Astronomy, Physics, Scientific Concepts, Algorithms
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Siegel, Lianne; Murad, M. Hassan; Chu, Haitao – Research Synthesis Methods, 2021
Often clinicians are interested in determining whether a subject's measurement falls within a normal range, defined as a range of values of a continuous outcome which contains some proportion (eg, 95%) of measurements from a healthy population. Several studies in the biomedical field have estimated reference ranges based on a meta-analysis of…
Descriptors: Meta Analysis, Medical Research, Biomedicine, Bayesian Statistics
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
W. Jake Thompson – Grantee Submission, 2023
In educational and psychological research, we are often interested in discrete latent states of individuals responding to an assessment (e.g., proficiency or non-proficiency on educational standards, the presence or absence of a psychological disorder). Diagnostic classification models (DCMs; also called cognitive diagnostic models [CDMs]) are a…
Descriptors: Bayesian Statistics, Measurement, Psychometrics, Educational Research
Thompson, Yutian T.; Song, Hairong; Shi, Dexin; Liu, Zhengkui – Educational and Psychological Measurement, 2021
Conventional approaches for selecting a reference indicator (RI) could lead to misleading results in testing for measurement invariance (MI). Several newer quantitative methods have been available for more rigorous RI selection. However, it is still unknown how well these methods perform in terms of correctly identifying a truly invariant item to…
Descriptors: Measurement, Statistical Analysis, Selection, Comparative Analysis
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Taylor, John M. – Practical Assessment, Research & Evaluation, 2019
Although frequentist estimators can effectively fit ordinal confirmatory factor analysis (CFA) models, their assumptions are difficult to establish and estimation problems may prohibit their use at times. Consequently, researchers may want to also look to Bayesian analysis to fit their ordinal models. Bayesian methods offer researchers an…
Descriptors: Bayesian Statistics, Factor Analysis, Least Squares Statistics, Error of Measurement

Peer reviewed
Direct link
